【題目】如圖,四邊形是一張放在平面直角坐標系中的矩形紙片,點在軸上,點在軸上,將邊折疊,使點落在邊的點處.已知折疊,且.
(1)判斷與是否相似?請說明理由;
(2)求直線與軸交點的坐標;
(3)是否存在過點的直線,使直線、直線與軸所圍成的三角形和直線、直線與軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應的直線;如果不存在,請說明理由.
【答案】解:(1)與相似.
理由如下:
由折疊知,,
,
又,
.
(2),設,
則.
由勾股定理得.
.
由(1),得,
,
.
在中,,
,解得.
,點的坐標為,
點的坐標為,
設直線的解析式為,
解得
,則點的坐標為.
(3)滿足條件的直線有2條:,
.
如圖2:準確畫出兩條直線.
【解析】
(1)由折疊知,,根據(jù)同角的余角相等可得,再有
即可得到與相似;
(2)),設,則,由勾股定理得,
,由(1),根據(jù)對應邊成比例可得,,在中根據(jù)勾股定義即可求出,從而得到點、點的坐標,再根據(jù)待定系數(shù)法即可得到直線的解析式,從而得到點的坐標。
(3)存在,應該有兩條如圖:
①直線BF,根據(jù)折疊的性質可知CE必垂直平分BD,那么∠DGP=∠CGF=90°,而∠CFG=∠DPG(都是∠OCP的余角),由此可得出兩三角形相似,那么可根據(jù)B、D兩點的坐標求出此直線的解析式.
②直線DN,由于∠FCO=∠NDO,那么可根據(jù)∠OCE即∠BEC的正切值,求出∠NDO的正切值,然后用OD的長求出ON的值,即可求出N點的坐標,然后根據(jù)N、D兩點的坐標求出直線DN的解析式.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC的BC邊上一點,連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點C的對應點E落在上.
(1)求證:AE=AB;
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,.點從點出發(fā),以每秒個單位長度的速度,沿邊向終點運動,過點作交折線于點,過點作交邊或邊于點,連結,設點的運動時間為秒.
(1)當點在邊上時,的長為________(用含的代數(shù)式表示 )
(2)當點為AC邊的中點時,求的值.
(3)設的面積為,求與之間的函數(shù)關系式.
(4)當邊與的邊垂直時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)的圖象交于A、B點,與y軸交于點C,其中點A的半標為(﹣2,3)
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)如圖,若將點C沿y軸向上平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結論:① abc>0;② 2a+b=0;③ 當m≠1時,a+b>am2+bm;④ a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2,
其中正確的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,點的坐標是,為拋物線上的一個動點,過點作軸于點,交直線于點,拋物線的對稱軸是直線.
(1)求拋物線的函數(shù)表達式;
(2)若點在第二象限內,且,求的面積.
(3)在(2)的條件下,若為直線上一點,在軸的下方,是否存在點,使是以為腰的等腰三角形?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3,若線段AB在x軸上,且AB為2個單位長度,以AB為邊作等邊△ABC,使點C落在該函數(shù)y軸右側的圖象上,則點C的坐標為( 。
A. (1+,3)或(2,﹣3)B. (1﹣,3)或(2,3)
C. (﹣1+,﹣3)或(2,﹣3)D. (1+,﹣3)或(2,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某新農村樂園設置了一個秋千場所,如圖所示,秋千拉繩OB的長為3m,靜止時,踏板到地面距離BD的長為0.6m(踏板厚度忽略不計).為安全起見,樂園管理處規(guī)定:兒童的“安全高度”為hm,成人的“安全高度”為2m(計算結果精確到0.1m)
(1)當擺繩OA與OB成45°夾角時,恰為兒童的安全高度,則h= m
(2)某成人在玩秋千時,擺繩OC與OB的最大夾角為55°,問此人是否安全?(參考數(shù)據(jù):≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com