一根長4 m的竹竿斜靠在墻上,如果竹桿與地面成60°的角,那么竹竿下端離墻腳________m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

九年級甲班數(shù)學興趣小組組織社會實踐活動,目的是測量一山坡的護坡石壩高度及石壩與地面的傾角∠α.
精英家教網(wǎng)
(1)如圖1,小明所在的小組用一根木條EF斜靠在護坡石壩上,使得BF與BE的長度相等,如果測量得到∠EFB=36°,那么∠α的度數(shù)是
 
;
(2)如圖2,小亮所在的小組把一根長為5米的竹竿AG斜靠在石壩旁,量出竿長1米時離地面的高度為0.6米,請你求出護坡石壩的垂直高度AH;
(3)全班總結了各組的方法后,設計了如圖3方案:在護坡石壩頂部的影子處立一根長為a米的桿子PD,桿子與地面垂直,測得桿子的影子長為b米,點P到護坡石壩底部B的距離為c米,如果利用(1)得到的結論,請你用a、b、c表示出護坡石壩的垂直高度AH.
(sin72°≈0.95,cos72°≈0.3,tan72°≈3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、笨笨拿著一根長竹竿進一個寬為3米的大門,他先橫著拿不進去,又豎起來拿,結果還是拿不進去,因為竹竿恰比大門高了1米.當他把竿斜著時,兩端剛好頂著大門的對角,你能算出竹竿長多少米嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

902班進行了一次數(shù)學實踐活動,探索測量山坡的護坡石壩高度及石壩與地面的傾角∠α的辦法.
精英家教網(wǎng)
(1)如圖1,小明組用一根木條EF斜靠在護坡石壩上,使得BF=BE,如果∠EFB=35°,那么∠α=
 

(2)如圖2,小慧組把一根長為6米的竹竿AG斜靠在石壩旁,量出竿長1米時離地面的高度為0.6米,請你求出護坡石壩的垂直高度AH.
(3)如圖3,小聰組用手電來測量另一處石壩高度的示意圖.點P處放一水平的平面鏡,光線從點D出發(fā)經(jīng)平面鏡反射后剛好射到石壩AB的頂端A處,已知C、P、B在同一條直線上,DC⊥BC,如果測得CD=1米,CP=2米,PB=14米,∠α=76°,請你求此處出護坡石壩的垂直高度AH(參考數(shù)據(jù):sin76°=0.97,cos76°=0.24,tan76°=4.0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

九年級甲班數(shù)學興趣小組組織社會實踐活動,目的是測量一山坡的護坡石壩高度及石壩與地面的傾角∠α.
(1)如圖1,小明所在的小組用一根木條EF斜靠在護坡石壩上,使得BF與BE的長度相等,如果測量得到∠EFB=36°,求∠α的度數(shù)
(2)如圖2,小亮所在的小組把一根長為5米的竹竿AG斜靠在石壩旁,量出竹竿GM長1米時離地面的高度MN為0.6米,求護坡石壩的垂直高度AH長
(3)全班總結了各組的方法后,設計了如圖3方案:在護坡石壩頂部的影子處有一棵大樹PD,測得大樹的影子長CP為9米,點P到護坡石壩底部B的距離為3米,如果利用(1)、(2)中得到的結論,求出大樹PD的高度.
(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.3,tan72°≈3.0 )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某人拿著一根長竹竿進一個寬3m的矩形城門,他先橫著拿但進不去;又豎起來拿,結果竹竿比城門還高1m;當他把竹竿左右斜著拿時,兩端恰好頂著城門的對角.問:竹竿長為多少?

查看答案和解析>>

同步練習冊答案