【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC= ,將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是
【答案】 +1
【解析】解:如圖,連接AM,
由題意得:CA=CM,∠ACM=60°,
∴△ACM為等邊三角形,
∴AM=CM,∠MAC=∠MCA=∠AMC=60°;
∵∠ABC=90°,AB=BC= ,
∴AC=2=CM=2,
∵AB=BC,CM=AM,
∴BM垂直平分AC,
∴BO= AC=1,OM=CMsin60°= ,
∴BM=BO+OM=1+ ,
所以答案是:1+ .
【考點(diǎn)精析】通過靈活運(yùn)用等腰直角三角形和角平分線的性質(zhì)定理,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;定理1:在角的平分線上的點(diǎn)到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點(diǎn),在這個角的平分線上即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x >0)的圖象上,點(diǎn)A在點(diǎn)B的左側(cè),且OA=OB,點(diǎn)A關(guān)于y軸的對稱點(diǎn)為A′,點(diǎn)B關(guān)于x軸的對稱點(diǎn)為B′,連接A′B′ 分別交OA,OB于點(diǎn)D,C,若四邊形ABCD的面積為,則點(diǎn)A的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2-8x+3=0,此方程可化為( 。
A. (x-4)2=13 B. (x+4)2=13 C. (x-4)2=19 D. (x+4)2=19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)用甲、乙兩種運(yùn)輸車將46t抗旱物資運(yùn)往災(zāi)區(qū),甲種運(yùn)輸車載重5t,乙種運(yùn)輸車載重4t,安排車輛不超過10輛,則甲種運(yùn)輸車至少應(yīng)安排( 。
A.4輛
B.5輛
C.6輛
D.7輛
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“m=﹣1”是“直線l1:mx+(2m﹣1)y+1=0與直線l2:3x+my+3=0垂直”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運(yùn)動.它從A處出發(fā)去看望B,C,D處的其他甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中B→C(____,____),C→____(+1,____);
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(3)若圖中另有兩個格點(diǎn)M,N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記作什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com