【題目】在互聯(lián)網(wǎng)技術(shù)的影響下,幸福新村的村民小劉在網(wǎng)上銷售蘋果,原計(jì)劃每天賣100千克,但實(shí)際每天的銷量與計(jì)劃銷量相比有出入,如表是某周的銷售情況(超額記為正,不足記為負(fù).單位:千克):

星期

與計(jì)劃量的差值

1)根據(jù)表中的數(shù)據(jù)可知前三天共賣出___________千克;

2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售多少千克?

3)若每千克按5元出售,每千克蘋果的運(yùn)費(fèi)為1元,那么小劉本周一共收入多少元?

【答案】12962)最多的一天比最少的一天多銷售29千克;(32868.

【解析】

1)求出前三天的總差值,再加上300千克即可;

2)找出賣出最多的與最少的千克數(shù),相減即可;

3)根據(jù)題意列出算式,計(jì)算即可求出值.

1)根據(jù)題意得:100×3+4-3-5=296(千克);

2千克

答:最多的一天比最少的一天多銷售29千克

3千克

17+100×7×5-1=717×4=2868(元).

答:小明本周一共收入2868元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,BC=2AB,對(duì)角線相交于O,過(guò)C點(diǎn)作CE⊥BDBDE點(diǎn),HBC中點(diǎn),連接AHBDG點(diǎn),交EC的延長(zhǎng)線于F點(diǎn),下列5個(gè)結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④SGAD=S四邊形GHCE;⑤CF=BD.正確的有( 。﹤(gè).

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說(shuō),到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上.圓心在P(a,b),半徑為r的圓的方程可以寫為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.

(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心, 為半徑的圓的方程為:________;

(2)根據(jù)以上材料解決以下問(wèn)題:

如圖2,B(-6,0)為圓心的圓與y軸相切于原點(diǎn),C是☉B上一點(diǎn),連接OC,BDOC垂足為D,延長(zhǎng)BDy軸于點(diǎn)E,已知sinAOC=.

①連接EC,證明EC是☉B的切線;

②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO,若存在,P點(diǎn)坐標(biāo),并寫出以P為圓心,PB為半徑的☉P的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B兩個(gè)蔬菜市場(chǎng)各有蔬菜14噸,現(xiàn)要全部運(yùn)往甲、乙兩地,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從蔬菜市場(chǎng)A到甲地運(yùn)費(fèi)50/噸,到乙地30/噸;從蔬菜市場(chǎng)B到甲地運(yùn)費(fèi)60/噸,到乙地45/噸。

1)設(shè)從蔬菜市場(chǎng)A向甲地運(yùn)送蔬菜x噸,請(qǐng)完成下表:

運(yùn)往甲地(單位:噸)

運(yùn)往乙地(單位:噸)

蔬菜市場(chǎng)A

x

蔬菜市場(chǎng)B

2)若總運(yùn)費(fèi)為1300元,則從蔬菜市場(chǎng)A向甲地運(yùn)送蔬菜多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交CE的延長(zhǎng)線于F,且AF=BD,連接BF.

(1)求證:點(diǎn)D是線段BC的中點(diǎn);

(2)如圖2,若AB=AC=13,AF=BD=5,求四邊形AFBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).

(1)若多項(xiàng)式的值與字母x的取值無(wú)關(guān),求a、b的值.

(2)在(1)的條件下,先化簡(jiǎn)多項(xiàng)式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.

(3)在(1)的條件下,求(b+a2+(2b+a2+(3b+a2++(9b+a2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有依次3個(gè)數(shù):2、97.對(duì)任意相鄰的兩個(gè)數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個(gè)數(shù)之間,可產(chǎn)生一個(gè)新數(shù)串:2、7、9、-2、7,這稱為第1次操作,做第2次同樣的操作后也可以產(chǎn)生一個(gè)新數(shù)串:2、57、29、-11、-2、9、7,繼續(xù)依次操作下去,問(wèn)從數(shù)串29、7開(kāi)始操作第20次后所產(chǎn)生的那個(gè)數(shù)串的所有數(shù)之和是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=+bx+c過(guò)點(diǎn)A3,0),B02).Mm,0)為線段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過(guò)點(diǎn)M作垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N

1)求直線AB的解析式和拋物線的解析式;

2)如果點(diǎn)PMN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);

3)如果以BP,N為頂點(diǎn)的三角形與APM相似,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們已經(jīng)學(xué)習(xí)過(guò)反比例函數(shù)y的圖像和性質(zhì),請(qǐng)你回顧研究它的過(guò)程,運(yùn)用所學(xué)知識(shí)對(duì)函數(shù)y的圖像和性質(zhì)進(jìn)行探索,并解決下列問(wèn)題:

1)該函數(shù)的圖像大致是(

2)寫出該函數(shù)兩條不同類型的性質(zhì):

;

.

3)寫出不等式30的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案