如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(0,2),以點(diǎn)A為中心,將線段AB逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是


  1. A.
    (-3,1)
  2. B.
    (-2,0)
  3. C.
    (1,-1)
  4. D.
    (-2,1)
A
分析:根據(jù)點(diǎn)A、B的坐標(biāo)求出OA、OB的長(zhǎng)度,過(guò)點(diǎn)B′作B′C⊥x軸于點(diǎn)C,然后證明△AOB與△B′CA全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得B′C=OA,AC=OB,然后求出OC的長(zhǎng)度,再根據(jù)點(diǎn)B′在第二象限寫出點(diǎn)B′的坐標(biāo)即可.
解答:解:∵點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(0,2),
∴OA=1,OB=2,
過(guò)點(diǎn)B′作B′C⊥x軸于點(diǎn)C,
∵AB′是AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到,
∴AB′=AB,∠B′AC+∠BAO=180°-90°=90°,
又∵∠BAO+∠ABO=90°,
∴∠ABO=∠B′AC,
在△AOB與△B′CA中,,
∴△AOB≌△B′CA(AAS),
∴B′C=OA=1,AC=OB=2,
∴OC=AC+OA=2+1=3,
∵點(diǎn)B′在第二象限,
∴點(diǎn)B′的坐標(biāo)是(-3,1).
故選A.
點(diǎn)評(píng):本題考查了坐標(biāo)與圖形的變化-旋轉(zhuǎn),根據(jù)旋轉(zhuǎn)變換的性質(zhì)求出兩三角形全等是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案