如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=
kx
的圖象交于M、N兩點.
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)連接OM、ON,求三角形OMN的面積.
分析:(1)將N坐標代入反比例解析式中求出k的值,確定出反比例解析式,將M坐標代入反比例解析式求出m的值,確定出M坐標,將M與N坐標代入一次函數(shù)解析式求出a與b的值,即可確定出一次函數(shù)解析式;
(2)由M與N橫坐標,以及0,將x軸分為四個范圍,找出反比例函數(shù)圖象位于一次函數(shù)圖象上方時x的范圍即可;
(3)設(shè)一次函數(shù)與x軸交于A點,三角形MON面積=三角形AOM面積+三角形AON面積,求出即可.
解答:解:(1)將N(-1,-4)代入反比例解析式得:k=4,即反比例解析式為y=
4
x
,
將M(2,m)代入反比例解析式得:m=2,即M(2,2),
將M與N坐標代入一次函數(shù)解析式得:
2a+b=2
-a+b=-4

解得:
a=2
b=-2

即一次函數(shù)解析式為y=2x-2;

(2)根據(jù)圖形得:x<-1或0<x<2時,反比例函數(shù)的值大于一次函數(shù)的值;

(3)設(shè)一次函數(shù)與x軸交于A點,
對于一次函數(shù)y=2x-2,令y=0,得到x=1,即OA=1,
則S△MON=S△AOM+S△AON=
1
2
×1×2+
1
2
×1×4=1+2=3.
點評:此題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用了待定系數(shù)法及數(shù)形結(jié)合思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點D的坐標;
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點A.當y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點
A(m,2)
(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結(jié)合圖象直接比較:當x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點A、點B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點C,CD⊥x軸于點D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習冊答案