【題目】如圖,點(diǎn)DE分別在錢段AB、AC上,CDBE交于O,已知ABAC,現(xiàn)添加以下的哪個(gè)條件仍不能判定ABE≌△ACD

A. B=∠CB. ADAEC. BECDD. BDCE

【答案】C

【解析】

欲使ABE≌△ACD,已知AB=AC,可根據(jù)全等三角形判定定理AAS、SASASA添加條件,逐一證明即可.

】解:∵AB=AC,∠A為公共角,
A、如添加∠B=C,利用ASA即可證明ABE≌△ACD
B、如添AD=AE,利用SAS即可證明ABE≌△ACD
C、如添BE=CD,因?yàn)?/span>SSA,不能證明ABE≌△ACD,所以此選項(xiàng)不能作為添加的條件;
D、如添BD=CE,等量關(guān)系可得AD=AE,利用SAS即可證明ABE≌△ACD
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AC、BD相交于點(diǎn)O,AE平分BAD,交BCE,若EAO=15°,則BOE的度數(shù)為 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將三角形ABC向右平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度請(qǐng)回答下列問題:

1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1   ,B1   C1   ;

2)畫出平移后三角形A1B1C1;

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1=ax2+2xc與直線y2=kxb交于點(diǎn)A(-1,0)、B(2,3).

(1)a、b、c的值;

(2)直接寫出當(dāng)y1y2時(shí),自變量的范圍是__________________________

(3)若點(diǎn)C是拋物線的頂點(diǎn),求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形分別是邊上的點(diǎn),分別是的中點(diǎn),當(dāng)點(diǎn)上從點(diǎn)向點(diǎn)移動(dòng)而點(diǎn)不動(dòng)時(shí),線段的長(zhǎng)__________ (填“會(huì)”或“不會(huì)”) 發(fā)生變化,如果不發(fā)生改變求出的長(zhǎng)(直接將答案填寫橫線上);如果的長(zhǎng)會(huì)改變說明理由.請(qǐng)把你認(rèn)為的結(jié)論寫出來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBC,∠ACB90°,AE平分∠BAC,BFAE,交AC延長(zhǎng)線于F,且垂足為E,則下列結(jié)論:①ADBF;②∠BAE=∠FBC;③SADBSADC;④ACCDAB;⑤AD2BE.其中正確的結(jié)論有______(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形中,的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn)

1)求證:;

2)連接,,當(dāng)_______°時(shí),四邊形是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分已知關(guān)于x的一元二次方程(m-2)x2+(2m+1)x+m=0有兩個(gè)實(shí)數(shù)根x1x2

(1)求m的取值范圍.

(2)若|x1|=|x2|,求m的值及方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)是(a,0)(b,0),a,b滿足方程組Cy軸正半軸上一點(diǎn),且SABC=6

1)求A、B、C三點(diǎn)的坐標(biāo);

2)是否存在點(diǎn)Ptt),使SPAB=SABC?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;

3)若點(diǎn)C沿y軸負(fù)半軸方向以每秒1個(gè)單位長(zhǎng)度平移至點(diǎn)D,當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),四邊形ABCD的面積S15個(gè)平方單位?求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案