【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+4的圖象在第一象限的交點于P,過點Px軸,y軸垂線分別交于A,B兩點,且函數(shù)y=kx+4的圖象分別交x軸、y軸于點C,D,已知SOCD=2,OA=2OC

1)點D的坐標為______;

2)求一次函數(shù)解析式及m的值;

3)寫出當x0時,不等式kx+4的解集.

【答案】(1) 0,4;(2) 一次函數(shù)解析式為y=4x+4m的值為24;(3) x2

【解析】

1)根據(jù)一次函數(shù)y=kx+4的圖象就可知它與y軸的交點D的坐標;

2)根據(jù)SOCD=2,可求出OC的長,得到C點、P點坐標,即可求出一次函數(shù)解析式及m的值;

3)不等式kx+4,可根據(jù)圖象求出直線在雙曲線上方時對應的x的取值范圍,也就是不等式kx+4的解集.

解:(1)對于一次函數(shù)y=kx+4

x=0時,y=4

于是可知點D的坐標為(0,4).

故答案為(0,4).

2)由(1)知OD=4,而SOCD=2

即:×OC×OD=2

OC=1,即點C的坐標為(-1,0

C-1,0)代入一次函數(shù)y=kx+4中,

-k+4=0,得k=4

∴一次函數(shù)y=kx+4的解析式為:y=4x+4

又∵OA=2OC

∴點A的坐標為(20

x=2代入y=4x+4中,得到y=12

∴點P的坐標為(212

而點P在反比例函數(shù)y=的圖象上,

m=2×12=24

故一次函數(shù)解析式為y=4x+4m的值為24

3)根據(jù)圖象可知反比例函數(shù)y=的圖象與一次函數(shù)y=4x+4的圖象在第一象限交于P2,12),

在第一象限中,當x2時,直線在雙曲線的上方.

故當x0時,不等式kx+4的解集為x2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點.

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)的解析式;

(3)點P是x軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于點,與軸交于點.

1)求的值及點的坐標;

2)過點 軸交反比例函數(shù)的圖象于點,求點D的坐標和的面積;

3)觀察圖象,寫出當x>0時不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20143月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測儀進行海上搜救,分別在AB兩個探測點探測到C處是信號發(fā)射點,已知AB兩點相距400m,探測線與海平面的夾角分別是,若CD的長是點C到海平面的最短距離.

BDAB有什么數(shù)量關系,試說明理由;

求信號發(fā)射點的深度結果精確到1m,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=mx2+2mx+m-1和直線y=mx+m-1,且m≠0

1)求拋物線的頂點坐標;

2)試說明拋物線與直線有兩個交點;

3)已知點Tt0),且-1≤t≤1,過點Tx軸的垂線,與拋物線交于點P,與直線交于點Q,當0m≤3時,求線段PQ長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,點DAB邊的點,過D作DEBC點E,點P是邊BC上的一個動點,APCD相交于點Q.APPD的值最小時,AQPQ之間的數(shù)量關系

A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙O分別與BCAC交于點D,E,過點DDFAC,垂足為F

1)求證:DF為⊙O的切線;

2)若 ,∠CDF22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明研究一函數(shù)的性質,下表是該函數(shù)的幾組對應值:

在平面直角坐標系中,描出以上表格中的各點,根據(jù)描出的點,畫出該函數(shù)圖像

根據(jù)所畫函數(shù)圖像,寫出該函數(shù)的一條性質: .

根據(jù)圖像直接寫出該函數(shù)的解析式及自變量的取值范圍: ;

若一次函數(shù)與該函數(shù)圖像有三個交點,則的范圍是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于去分母可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學思想轉化,把未知轉化為已知.

轉化的數(shù)學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問題:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用轉化思想求方程的解;

(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.

查看答案和解析>>

同步練習冊答案