【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點,連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫出y1> y2時自變量x的取值范圍.
【答案】(1)k=3,n=;(2);(3) 或 x>2.
【解析】
(1)把A,B的坐標代入直線的解析式求出m,n的值,再把B點坐標代入反比例函數(shù)解析式求出k的值;
(2)先求出直線與x軸、y軸的交點坐標,再求出即可.
(3)由圖象可知取一次函數(shù)圖象在反比例函數(shù)圖象上方的x的取值范圍即可.
解:(1)∵點B(n,﹣6)在直線y=3x﹣5上.
∴-6=3n-5,解得:n=.
∴B(,-6);
∵反比例函數(shù)的圖象也經(jīng)過點B(,-6),
∴k-1=-6×()=2,解得:k=3;
(2)設直線y=3x﹣5分別與x軸,y軸相交于點C,點D,
當y=0時,即3x﹣5=0,x=,
∴OC=,
當x=0時,y=3×0-5=-5,
∴OD=5,
∵點A(2,m)在直線y=3x﹣5上,
∴m=3×2-5=1,即A(2,1).
.
(3)由圖象可知y1> y2時自變量x的取值范圍為: 或 x>2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)的圖象與函數(shù)(x>0)的圖象交于A(m,1),B(1,n)兩點.
(1)求k,m,n的值;
(2)利用圖象寫出當x≥1時,和的大小關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,雙曲線l:y=(x>0)過點A(a,b),B(2,1)(0<a<2);過點A作AC⊥x軸,垂足為C.
(1)求l的解析式;
(2)當△ABC的面積為2時,求點A的坐標;
(3)點P為l上一段曲線AB(包括A,B兩點)的動點,直線l1:y=mx+1過點P;在(2)的條件下,若y=mx+1具有y隨x增大而增大的特點,請直接寫出m的取值范圍.(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知平面內(nèi)有一個△ABC,O為平面內(nèi)的一點,延長AO到A′,使OA′=OA,延長BO到B′,使OB′=OB,延長CO到從C′,使OC′=OC,得到△A′B′C′,問:△A′B′C′與△ABC是否全等?這兩個三角形的對應邊是否平行?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
材料1:在處理分數(shù)和分式問題時,有時由于分子比分母大,或者分子的次數(shù)高于分母的次數(shù),在實際運算時往往難度比較大,這時我們可以將假分數(shù)(分式)拆分成一個整數(shù)(整式)與一個真分數(shù)(式)的和(差)的形式,通過對簡單式的分析來解決問題,我們稱之為分離整數(shù)法.此法在處理分式或整除問題時頗為有效.
例:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解:設x+2=t,則x=t﹣2.
∴原式=
∴
這樣,分式就拆分成一個整式(x﹣5)與一個分式的和的形式.
根據(jù)以上閱讀材料回答下列問題:
(1)將分式拆分成一個整式與一個分子為整數(shù)的分式的和的形式,則結(jié)果為 ;
(2)已知分式的值為整數(shù),求整數(shù)x的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,點E為邊CD的中點,若菱形ABCD的周長為16,∠BAD=60°,則△OCE的面積是( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠BAC=90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對折,使點B落在點B′處,連結(jié)AB',BB',延長CD交BB'于點E,設∠ABC=2α(0°<α<45°).
(1)如圖1,若AB=AC,求證:CD=2BE;
(2)如圖2,若AB≠AC,試求CD與BE的數(shù)量關系(用含α的式子表示);
(3)如圖3,將(2)中的線段BC繞點C逆時針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EF交BC于點O,設△COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F分別是邊AD、AB上的點,連結(jié)OE、OF、EF.若AB=7,BC=5,∠DAB=45°,則①點C到直線AB的距離是_____.②△OEF周長的最小值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)與x軸分別交于A(﹣3,0),B兩點,與y軸交于點C,拋物線的頂點E(﹣1,4),對稱軸交x軸于點F.
(1)請直接寫出這條拋物線和直線AE、直線AC的解析式;
(2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;
(3)如圖2,點D是拋物線上一動點,它的橫坐標為m,且﹣3<m<﹣1,過點D作DK⊥x軸于點K,DK分別交線段AE、AC于點G、H.在點D的運動過程中,
①DG、GH、HK這三條線段能否相等?若相等,請求出點D的坐標;若不相等,請說明理由;
②在①的條件下,判斷CG與AE的數(shù)量關系,并直接寫出結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com