【題目】已知平面內(nèi)有一個(gè)△ABC,O為平面內(nèi)的一點(diǎn),延長(zhǎng)AO到A′,使OA′=OA,延長(zhǎng)BO到B′,使OB′=OB,延長(zhǎng)CO到從C′,使OC′=OC,得到△A′B′C′,問(wèn):△A′B′C′與△ABC是否全等?這兩個(gè)三角形的對(duì)應(yīng)邊是否平行?請(qǐng)說(shuō)明理由.
【答案】△A'B'C'≌△ABC,這兩個(gè)三角形的對(duì)應(yīng)邊平行,理由見(jiàn)解析
【解析】
先根據(jù)題意畫(huà)出圖形,然后由條件即可分析推理出這兩個(gè)三角形全等,并且對(duì)應(yīng)邊是平行的.
△A'B'C'≌△ABC,這兩個(gè)三角形的對(duì)應(yīng)邊平行,理由如下:
如圖所示,
在△AOC和△A'OC'中,
,
∴△AOC≌△A'OC'(SAS),
∴AC=A'C',
同理可得△BOC≌△B'OC',△AOB≌△A'OB',
∴BC=B'C',AB=A'B',
在△ABC和△A'B'C'中,
,
∴△ABC≌△A'B'C'(SSS),
∵△AOC≌△A'OC',
∴∠CAO=∠C'A'O,
∴AC∥A'C',
同理可得AB∥A'B',BC∥B'C'.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上(不與A、B重合),∠ACB的平分線交AB于E,交⊙O于D,則下列結(jié)論不正確的是( 。
A. AB2=2BD2 B. ACBC=CECD
C. BD2=DEDC D. ACBC+BD2=AB2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的一個(gè)交點(diǎn)坐標(biāo)是(3,0),對(duì)稱(chēng)軸為直線x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a﹣2b+c>0;④當(dāng)y>0時(shí),﹣1<x<3;⑤b<c.其中正確的個(gè)數(shù)是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點(diǎn)D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合),將△ACD沿AD翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)是E,AE交BC于點(diǎn)F,若DE∥AB,則DF的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形是知形,,點(diǎn)是線段上一動(dòng)點(diǎn)(不與重合),點(diǎn)是線段延長(zhǎng)線上一動(dòng)點(diǎn),連接交于點(diǎn).設(shè),已知與之間的函數(shù)關(guān)系如圖②所示.
(1)求圖②中與的函數(shù)表達(dá)式;
(2)求證:;
(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點(diǎn)M為正方形ABCD的邊CD上的動(dòng)點(diǎn)(與點(diǎn)C,D不重合),連接BM,作MF⊥BM,與正方形ABCD的外角∠ADE的平分線交于點(diǎn)F.設(shè)CM=x,△DFM的面積為y,則y與x之間的函數(shù)關(guān)系式為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點(diǎn),連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫(xiě)出y1> y2時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為斜邊上的高,以為直徑的圓交于點(diǎn),交于點(diǎn),為的中點(diǎn).
(1)求證:為的切線;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.
(1)當(dāng)銷(xiāo)售單價(jià)為70元時(shí),每天的銷(xiāo)售利潤(rùn)是多少?
(2)求出每天的銷(xiāo)售利潤(rùn)y(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?(每天的總成本=每件的成本×每天的銷(xiāo)售量)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com