【題目】已知平面內(nèi)有一個(gè)△ABC,O為平面內(nèi)的一點(diǎn),延長(zhǎng)AOA,使OA′=OA,延長(zhǎng)BOB,使OB′=OB,延長(zhǎng)CO到從C,使OC′=OC,得到△ABC,問(wèn):△ABC與△ABC是否全等?這兩個(gè)三角形的對(duì)應(yīng)邊是否平行?請(qǐng)說(shuō)明理由.

【答案】A'B'C'≌△ABC,這兩個(gè)三角形的對(duì)應(yīng)邊平行,理由見(jiàn)解析

【解析】

先根據(jù)題意畫(huà)出圖形,然后由條件即可分析推理出這兩個(gè)三角形全等,并且對(duì)應(yīng)邊是平行的.

A'B'C'≌△ABC,這兩個(gè)三角形的對(duì)應(yīng)邊平行,理由如下:

如圖所示,

在△AOC和△A'OC'中,

,

∴△AOC≌△A'OC'SAS),

AC=A'C',

同理可得△BOC≌△B'OC',△AOB≌△A'OB',

BC=B'C'AB=A'B',

在△ABC和△A'B'C'中,

,

∴△ABC≌△A'B'C'SSS),

∵△AOC≌△A'OC',

∴∠CAO=C'A'O,

ACA'C',

同理可得ABA'B',BCB'C'

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上(不與A、B重合),∠ACB的平分線交ABE,交⊙OD,則下列結(jié)論不正確的是( 。

A. AB22BD2 B. ACBCCECD

C. BD2DEDC D. ACBC+BD2AB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸的一個(gè)交點(diǎn)坐標(biāo)是(3,0),對(duì)稱(chēng)軸為直線x1,下列結(jié)論:①abc0;②2a+b0;③4a2b+c0;④當(dāng)y0時(shí),﹣1x3;⑤bc.其中正確的個(gè)數(shù)是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC8,點(diǎn)D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合),將△ACD沿AD翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)是E,AEBC于點(diǎn)F,若DEAB,則DF的長(zhǎng)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,四邊形是知形,,點(diǎn)是線段上一動(dòng)點(diǎn)(不與重合),點(diǎn)是線段延長(zhǎng)線上一動(dòng)點(diǎn),連接于點(diǎn).設(shè),已知之間的函數(shù)關(guān)系如圖②所示.

1)求圖②中的函數(shù)表達(dá)式;

2)求證:;

3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,點(diǎn)M為正方形ABCD的邊CD上的動(dòng)點(diǎn)(與點(diǎn)C,D不重合),連接BM,作MF⊥BM,與正方形ABCD的外角∠ADE的平分線交于點(diǎn)F.設(shè)CM=x,△DFM的面積為y,則y與x之間的函數(shù)關(guān)系式為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y1=3x5與反比例函數(shù)y2=的圖象相交A2m),Bn,﹣6)兩點(diǎn),連接OA,OB

1)求kn的值;

2)求AOB的面積;

3)直接寫(xiě)出y1 y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知斜邊上的高,以為直徑的圓交點(diǎn),交點(diǎn),的中點(diǎn).

1)求證:的切線;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo)據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本

1當(dāng)銷(xiāo)售單價(jià)為70元時(shí),每天的銷(xiāo)售利潤(rùn)是多少?

2求出每天的銷(xiāo)售利潤(rùn)y與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;

3如果該企業(yè)每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?每天的總成本=每件的成本×每天的銷(xiāo)售量

查看答案和解析>>

同步練習(xí)冊(cè)答案