已知⊙M在平面直角坐標(biāo)系中的位置關(guān)系如圖所示,弦AO=10,弦BO=6,則圓心M的坐標(biāo)是________.

(-5,-3)
分析:首先過點M作MC⊥OB于點C,過點M作MD⊥OA于點D,由垂徑定理即可求得OD與OC的值,繼而求得答案.
解答:解:過點M作MC⊥OB于點C,過點M作MD⊥OA于點D,
∵弦AO=10,弦BO=6,
∴OC=OB=3,OD=OA=5,
∴圓心M的坐標(biāo)是:(-5,-3).
故答案為:(-5,-3).
點評:此題考查了垂徑定理的應(yīng)用.此題難度不大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐系中,已知O為原點,在長方形ABCD中,A、B、C坐標(biāo)分別是A(-3,1),B(-3,3),C(2,3)
(1)求D坐標(biāo);
(2)將長方形以每秒1個單位長度的速度水平向右平移2秒后得四邊形A1B1C1D1的頂點坐標(biāo)是多少?請將(1),(2)答案填下表;
(3)平移(2)中長方形ABCD,幾秒鐘后△OBD面積為長方形ABCD的面積的
3
2
?
點   D A1   B1  C1  D1
 坐標(biāo)          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)若A、B是平面直角坐標(biāo)系中x軸上的兩個點,點B在點A的左側(cè),且點A、B的橫坐l標(biāo)分別是(2)中方程的兩個根,以線段AB為直徑在x軸的上方作半圓P,設(shè)直線的解析l式為y=x+b,若直線與半圓P只有兩個交點時,求出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:044

在平面直角坐標(biāo)系xoy中,已知點p的坐標(biāo)是(8,0),⊙P的半徑為6.

(1)k為何值時,直線y=kx(k≠0)與⊙P相切?

(2)當(dāng)k=1時,直線y=kx與⊙P的位置關(guān)系如何?若有交點,求坐交點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點A,

與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐系中,已知O為原點,在長方形ABCD中,A、B、C坐標(biāo)分別是A(-3,1),B(-3,3),C(2,3)
(1)求D坐標(biāo);
(2)將長方形以每秒1個單位長度的速度水平向右平移2秒后得四邊形A1B1C1D1的頂點坐標(biāo)是多少?請將(1),(2)答案填下表;
(3)平移(2)中長方形ABCD,幾秒鐘后△OBD面積為長方形ABCD的面積的數(shù)學(xué)公式?
DA1 B1 C1 D1
坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案