【題目】如圖,的邊上一點(diǎn),,于點(diǎn),若

1)求證:四邊形是平行四邊形;

2)若,,求四邊形的面積.

【答案】1)證明見解析;(225

【解析】

1)首先利用ASA得出DAF≌△ECF,進(jìn)而利用全等三角形的性質(zhì)得出CE=AD,即可得出四邊形ACDE是平行四邊形;
2)由AEEC,四邊形ADCE是平行四邊形,可推出四邊形ADCE是矩形,由FAC的中點(diǎn),求出AC,根據(jù)勾股定理即可求得AE,由矩形面積公式即可求得結(jié)論.

解:(1)證明:∵CEAB,
∴∠BAC=ECA
DAFECF中,
,
∴△DAF≌△ECFASA),
CE=AD,
∴四邊形ADCE是平行四邊形;
2)∵AEEC,四邊形ADCE是平行四邊形,
∴四邊形ADCE是矩形,
RtAEC中,FAC的中點(diǎn),
AC=2EF=10,
AE2=AC2-EC2=102-52=75,
AE=5
∴四邊形ADCE的面積=AEEC=25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小濤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖像與性質(zhì)進(jìn)行了探究,下面是小濤的探究過程,請補(bǔ)充完整:

1)下表是的幾組對應(yīng)值

...

-2

-1

0

1

2

3

...

...

-8

-3

0

m

n

1

3

...

請直接寫出:=, m=, n=

2)如圖,小濤在平面直角坐標(biāo)系中,描出了上表中已經(jīng)給出的部分對應(yīng)值為坐標(biāo)的點(diǎn),再描出剩下的點(diǎn),并畫出該函數(shù)的圖象;

3)請直接寫出函數(shù)的圖像性質(zhì):;(寫出一條即可)

4)請結(jié)合畫出的函數(shù)圖象,解決問題:若方程有三個(gè)不同的解,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已經(jīng)成為更多人自主學(xué)習(xí)的選擇.某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對本校部分學(xué)生進(jìn)行了你對哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)統(tǒng)計(jì)圖中提供的信息解答下列問題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù);

2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校共有學(xué)生人,請你估計(jì)該校對在線閱讀最感興趣的學(xué)生有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩地之間有一修理廠C,一日小海和王陸分別從AB兩地同時(shí)出發(fā)相向而行,王陸開車,小海騎摩托.二人相遇時(shí)小海的摩托車突然出故障無法前行,王陸決定將小海和摩托車一起送回到修理廠C后再繼續(xù)按原路前行,王陸到達(dá)A地后立即返回B地,到B地后不再繼續(xù)前行,等待小海前來(裝載摩托車時(shí)間和掉頭時(shí)間忽略不計(jì)),整個(gè)行駛過程中王陸速度不變,而小海在修理廠花了十分鐘修好摩托車,為了趕時(shí)間,提速前往目的地B,小海到達(dá)B地后也結(jié)束行程,若圖象表示的是小海與王陸二人到修理廠C的距離和ykm)與小海出行時(shí)間之間xh)的關(guān)系,則當(dāng)王陸第二次與小海在行駛中相遇時(shí),小海離目的地B還有_____km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1和圖2,在△ABC中,AB13BC14,.

探究:如圖1,AHBC于點(diǎn)H,則AH___,AC___,△ABC的面積___.

拓展:如圖2,點(diǎn)DAC上(可與點(diǎn)A、C重合),分別過點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BDx,AEm,CFn,(當(dāng)點(diǎn)DA重合時(shí),我們認(rèn)為0.

1)用含x、mn的代數(shù)式表示

2)求(m+n)x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;

3)對給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.

發(fā)現(xiàn):請你確定一條直線,使得A、BC三點(diǎn)到這條直線的距離之和最。ú槐貙懗鲞^程),并寫出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019 316日,由中國科協(xié)主辦的第六屆全國青年科普創(chuàng)新實(shí)驗(yàn)暨作品大賽啟動(dòng),重點(diǎn)圍繞“智能、環(huán)保、教育”三大主題,某中學(xué)派出甲、乙兩組隊(duì)伍參加本次大賽,有四個(gè)命題供他們選擇:

①智能:智能控制及人工智能命題(表示)

②環(huán)保:包括生物環(huán)境、風(fēng)能兩個(gè)命題(分別用表示)

③教育:未來教育命題(表示)

甲組隊(duì)伍在四個(gè)命題中隨機(jī)選取一個(gè)報(bào)名 ,恰好選擇“教育”主題的概率是多少?

若甲,乙兩組隊(duì)伍各隨機(jī)從四個(gè)命題中選--個(gè)報(bào)名.請用樹狀圖法或列表法求出他們都選擇“環(huán)!敝黝}的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①在中,若點(diǎn)在邊上,且則點(diǎn)定義為的邊上的“金點(diǎn)”.

已知點(diǎn)的邊上的“金點(diǎn)”:

①若的長為 _;

②若的長為 _;

在圖①中,若點(diǎn)的邊的中點(diǎn),試判斷點(diǎn)是不是的“金

點(diǎn)”,并說明理由;

如圖②,已知點(diǎn)為同一直線上三點(diǎn),且所在直線上是否存在一點(diǎn)使點(diǎn)中的某一點(diǎn)是其余三點(diǎn)圍成的三角形的“金點(diǎn)”.若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交ABAD于點(diǎn)M,N②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)P③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QCBC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C.

(1)求拋物線的解析式;

(2)點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;

(3)點(diǎn)D是拋物線對稱軸上的一動(dòng)點(diǎn),連接OD、CD,設(shè)ODC外接圓的圓心為M,當(dāng)sinODC的值最大時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案