化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1
=
 
分析:對各式分母有理化,分析可得除首位兩個式子之外,各個式子可以與前一項、后一項相消,相消后,易得答案.
解答:解:對各式分母有理化可得:
原式=
3
-1
2
+
5
-
3
2
+
7
-
5
2
+…+
2n+1
-
2n-1
2

=
1
2
3
-1+
5
-
3
+…+
2n+1
-
2n-1

=
2n+1
-1
2

故答案為
2n+1
-1
2
點評:本題需要仔細觀察各式子間的關(guān)系,找到解題的突破口,才能簡便解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.
在進行二次根式的化簡與運算時,我們有時會碰上如
3
5
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
3
5
=
5
5
×
5
=
3
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)請用不同的方法化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=(  );
②參照(四)式得
2
5
+
3
=(  )
(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.在進行二次根式去除時,我們有時會碰上如
5
3
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
5
3
=
5
5
×
5
=
3
5
5
(一)
2
3
=
2×3
3×3
=
6
3
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1

2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=
 
;
②參照(四)式得
2
5
+
3
=
 

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.
在進行二次根式化簡時,我們有時會碰上如
2
5
2
3
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
2
5
=
5
5
×
5
=
2
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
;(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)2-12
=
3
-1。ㄈ
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)2-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1(四)
(1)請用以下指定的方法化簡
2
2009
+
2007
(2).
參照(三)式化簡
2
2009
+
2007

參照(四)式化簡
2
2009
+
2007

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)先化簡,再求值:
4
x2-16
÷
2
x-4
+
x
x+4
,其中x=3.
(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在進行二次根式化簡時,我們有時會碰上如
5
3
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
5
3
=
3
3
×
3
=
5
3
3
2
3
=
2×3
3×3
=
6
3
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2×(
3
-1)
(
3
)
2
-12
=
3
-1

以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1

(1)請用不同的方法化簡
2
5
+
3
;
(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

同步練習(xí)冊答案