如圖在四邊形ABCD中,∠1和∠2分別是∠A和∠C的外角,且∠B+∠D=140°,則∠1+∠2=________°.

140
分析:利用四邊形內(nèi)角和定理求得∠DAB+∠DCB,然后利用鄰補(bǔ)角的定義即可求解.
解答:∵∠DAB+∠DCB=360°-(∠B+∠D)=360°-140°=220°
∴∠1+∠2=2×180°-(∠DAB+∠DCB)=360°-220°=140°.
故答案是:140°.
點(diǎn)評(píng):本題考查了四邊形的內(nèi)角和定理以及鄰補(bǔ)角的定義,正確理解∠1+∠2=2×180°-(∠DAB+∠DCB)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知:如圖在四邊形ABCD中,∠A=∠D、∠B=∠C,試判斷AD與BC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖在四邊形ABCD中,E是對(duì)角線BD上一點(diǎn),EF∥AD,EM∥BC,則
EF
AD
+
EM
BC
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在四邊形ABCD中,∠ACB+∠ADB=180°,∠ABC=∠BAC=60°.
求證:∠ADC=∠BDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在四邊形ABCD中,∠1和∠2分別是∠A和∠C的外角,且∠B+∠D=140°,則∠1+∠2=
140
140
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在四邊形ABCD中,已知AB∥CD,∠B=60°,下面是求∠C的度數(shù)的推理過(guò)程請(qǐng)?zhí)畛隼碛桑芊袂蟮谩螦的度數(shù)?如果能請(qǐng)求出∠A的度數(shù),如果不能請(qǐng)補(bǔ)充一個(gè)條件使其能求出∠A的度數(shù),請(qǐng)完善解題過(guò)程
解:∵AB∥CD(
已知
已知
)∴∠B+∠C=180°(
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等

∵∠B=60°(
已知
已知

∴∠C=120°(
補(bǔ)角的定義
補(bǔ)角的定義

根據(jù)題目已知條件,
AD∥BC
AD∥BC

查看答案和解析>>

同步練習(xí)冊(cè)答案