【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=k1x+b的圖象與x軸交于點A(-3,0),與y軸交于點B,且與正比例函數(shù)y=kx的圖象交點為C(3,4).
(1)求正比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)若點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,請求出點D的坐標(biāo);
(3)在x軸上是否存在一點E使△BCE周長最小,若存在,求出點E的坐標(biāo)
(4)在x軸上求一點P使△POC為等腰三角形,請直接寫出所有符合條件的點P的坐標(biāo).
【答案】
(1)解:∵一次函數(shù)y=k1x+b過點A(-3,0); C(3,4)
∴ 解得:
∴一次函數(shù)關(guān)系式為y= x+2
∵正比例函數(shù)y=kx的圖象過點為C(3,4)
∴4=-3k2
∴k2= 正比例函數(shù):y= x
(2)解:如圖所示,作D1M⊥X軸于M點,作D2N⊥Y軸于N,在等腰△AD1B中,
A D1=AB ; ∠D1AB=90° ∠D1DA=∠AOB=90°
∴∠D1AM+∠BAO=90° 又∵∠ABO+∠BAO=90°
∴∠D1AM =∠BAO
在△D1DA與△ OAB中
∠D1AM =∠BAO(已證)
∠D1MA=∠AOB(已證)
A D1=AB (已證)
∴△D1MA≌△OAB(AAS)
∴D1 M=OA=3;AM=BO=2 ∴OM=5
∵D1在第二象限,∴D1(-5,3)
同理證:△D2NB≌△BOA(AAS) ∴D2(-2,5)
(3)解:存在;作C關(guān)于X軸對稱點C1,連接BC1,交X軸于E,此時△BCE周長最小。
∵ ∴
∴BC1的解析式為:y=-2x+2
令y=0,得0=-2x+2, x=1
∴E點的坐標(biāo)為(1,0)
(4)解:P (5,0)
P (-5,0)
P (6, 0)
P ( ,0)
【解析】(4)①當(dāng)OC是腰,O是頂角的頂點時,OP=OC,則點P的坐標(biāo)為(5,0)或(-5,0);
②當(dāng)OC是腰,C是頂角的頂點時,CP=CP,則點P與點O關(guān)于x=3對稱,則點P的坐標(biāo)為(6,0);
③當(dāng)OC是底邊時,設(shè)點P的坐標(biāo)為(a,0),則(a-3)2+42=a2,解得a=,則點P的坐標(biāo)為(,0).
綜上可知,點P的坐標(biāo)(5,0)或(-5,0)或(6,0)或(,0).
【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的性質(zhì)的相關(guān)知識,掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減小,以及對一次函數(shù)的圖象和性質(zhì)的理解,了解一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點與軸交于點,⊙的半徑為為⊙上一動點.
(1)點的坐標(biāo)分別為( ),( );
(2)是否存在點,使得為直角三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由;
(3)連接,若為的中點,連接,則的最大值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生中,最喜愛體育節(jié)目的有 人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;
(2)被調(diào)查學(xué)生的總數(shù)為 人,統(tǒng)計表中的值為 ,統(tǒng)計圖中的值為 ;
(3)在統(tǒng)計圖中,類所對應(yīng)扇形圓心角的度數(shù)為 ;
(4)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校最喜愛欣慰節(jié)目的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點是坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,點的坐標(biāo)為,點分別為四邊形邊上的動點,動點從點開始,以每秒1個單位長度的速度沿路線向中點勻速運動,動點從點開始,以每秒兩個單位長度的速度沿路線向終點勻速運動,點同時從點出發(fā),當(dāng)其中一點到達(dá)終點后,另一點也隨之停止運動。設(shè)動點運動的時間秒(),的面積為.
(1)填空:的長是 ,的長是 ;
(2)當(dāng)時,求的值;
(3)當(dāng)時,設(shè)點的縱坐標(biāo)為,求與的函數(shù)關(guān)系式;
(4)若,請直接寫出此時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y+1與x+3成正比例,且當(dāng)x=5時,y=3
(1)求 與 之間的函數(shù)關(guān)系式;、
(2)當(dāng) 時,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com