【題目】我們規(guī)定:=(a≠0),即a的負P次冪等于a的p次冪的倒數.例:=
(1)計算:=__;=__;
(2)如果=,那么p=__;如果=,那么a=__;
(3)如果=,且a、p為整數,求滿足條件的a、p的取值.
科目:初中數學 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線l∥BC,交直線CD于點F.將直線l向右平移,設平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關于t的函數圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.
信息讀取
(1)梯形上底的長AB=;
(2)直角梯形ABCD的面積=;
圖象理解
(3)寫出圖②中射線NQ表示的實際意義;
(4)當2<t<4時,求S關于t的函數關系式;
問題解決
(5)當t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,三角形ABC的頂點A、B、C的坐標分別為(0,3)、(﹣2,1)、(﹣1,1),如果將三角形ABC先向右平移2個單位長度,再向下平移2個單位長度,會得到三角形A′B′C′,點A'、B′、C′分別為點A、B、C移動后的對應點.
(1)請直接寫出點A′、B'、C′的坐標;
(2)請在圖中畫出三角形A′B′C′,并直接寫出三角形A′B′C′的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的內角∠ABC和外角∠ACD的平分線相交于點E,BE交AC于點F,過點E作EG∥BD交AB于點G,交AC于點H,連接AE,有以下結論:
①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正確的結論有_____(將所有正確答案的序號填寫在橫線上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,D、E分別在BC、AC邊上.
(1)如圖1,F是線段AD上的一點,連接CF,若AF=CF;
①求證:點F是AD的中點;
②判斷BE與CF的數量關系和位置關系,并說明理由;
(2)如圖2,把△DEC繞點C順時針旋轉α角(0<α<90°),點F是AD的中點,其他條件不變,判斷BE與CF的關系是否不變?若不變,請說明理由;若要變,請求出相應的正確結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說明:AB∥CD.
完成推理過程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫縱坐標分別為整數的點,其順序為(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根據這個規(guī)律,第2 018個點的坐標為( )
A. (45,9) B. (45,11) C. (45,7) D. (46,0)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com