【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動三角板,使三角板兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M、N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是;

(2)如圖2,若點(diǎn)O在正方形的中心(即兩對角線交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請說明理由;

(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請?zhí)骄奎c(diǎn)O在移動過程中可形成什么圖形?

(4)如圖4,是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請你就“點(diǎn)O的位置在各種情況下(含外部)移動所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說明)

【答案】
(1)OM=ON
(2)解:仍成立.

證明:如圖2,連接AC,BD,

則由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°

∵∠MON=90°

∴∠BOM=∠CON

在△BOM和△CON中

∴△BOM≌△CON(ASA)

∴OM=ON


(3)解:如圖3,過點(diǎn)O作OE⊥BC,作OF⊥CD,垂足分別為E、F,

則∠OEM=∠OFN=90°

又∵∠C=90°

∴∠EOF=90°=∠MON

∴∠MOE=∠NOF

在△MOE和△NOF中

∴△MOE≌△NOF(AAS)

OE=OF

又∵OE⊥BC,OF⊥CD

∴點(diǎn)O在∠C的平分線上

∴O在移動過程中可形成線段AC


(4)解:O在移動過程中可形成直線AC
【解析】解:(1)若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是:OM=ON;

【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為3,1,反比例函數(shù)y= 的圖象經(jīng)過A,B兩點(diǎn),則菱形ABCD的面積為( )

A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在四邊形中,,、分別是的中點(diǎn),連接并延長,分別與、的延長線交于點(diǎn)、,證明:

請將證明的過程填寫完整:

證明:連接,取的中點(diǎn),連接

的中點(diǎn),的中點(diǎn),

________,_______,同理:_______,_______

,

,,

2)運(yùn)用上題方法解決下列問題:

問題一:如圖2,在四邊形中,相交于點(diǎn),分別是、的中點(diǎn),連接,分別交、于點(diǎn)、,請判斷的形狀,并說明理由;

問題二:如圖3,在鈍角中,,點(diǎn)在上,、分別是的中點(diǎn),連接并延長,與的延長線交于點(diǎn),連接,若,是直角三角形且,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生“國學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進(jìn)行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,等腰和等腰中,,,,三點(diǎn)在同一直線上,求證:;

2)如圖2,等腰中,,,是三角形外一點(diǎn),且,求證:;

3)如圖3,等邊中,是形外一點(diǎn),且,

的度數(shù)為 ;

,,之間的關(guān)系是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察圖中給出的信息,回答下列問題:

1)一本筆記本與一支中性筆分別是多少元?

2)某學(xué)校給參加體育比賽獲一等獎(jiǎng)的10名學(xué)生發(fā)筆記本,給獲二等獎(jiǎng)的20名學(xué)生發(fā)中性筆,現(xiàn)有兩個(gè)超市在搞促銷活動,A超市規(guī)定:這兩種商品都打八折;B超市規(guī)定:每買一個(gè)筆記本送一支中性筆,另外購買的中性筆按原價(jià)賣.該學(xué)校選擇哪家超市購買更合算,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,點(diǎn) D 是邊 BC 上的點(diǎn)(與 B、C 兩點(diǎn)不重合,過點(diǎn) D DEAC,DFAB,分別交 AB、AC E、F 兩點(diǎn),下列說法正確的是(

A. AD 平分BAC,則四邊形 AEDF 是菱形

B. BDCD,則四邊形 AEDF 是菱形

C. AD 垂直平分 BC,則四邊形 AEDF 是矩形

D. ADBC,則四邊形 AEDF 是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:過PPEAB,通過平行線性質(zhì)來求∠APC.

(1)按小明的思路,易求得∠APC的度數(shù)為_____度;

(2)問題遷移:如圖2,ABCD,點(diǎn)P在射線OM上運(yùn)動,記∠PAB=α,PCD=β,當(dāng)點(diǎn)PB、D兩點(diǎn)之間運(yùn)動時(shí),問∠APCα、β之間有何數(shù)量關(guān)系?請說明理由;

(3)(2)的條件下,如果點(diǎn)PB、D兩點(diǎn)外側(cè)運(yùn)動時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請直接寫出∠APCα、β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)動車出發(fā)前油箱內(nèi)有油,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升.油箱中余油量()與行駛時(shí)間()之間的函數(shù)關(guān)系如圖所示,根據(jù)圖回答問題:

1)機(jī)動車行駛后加油,途中加油 :

2)根據(jù)圖形計(jì)算,機(jī)動車在加油前的行駛中每小時(shí)耗油多少升?

3)如果加油站距目的地還有,車速為,要到達(dá)目的地,油箱中的油是否夠用?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案