【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當點P在B、D兩點之間運動時,問∠APC與α、β之間有何數(shù)量關系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數(shù)量關系.
【答案】(1)110°.(2)∠APC=∠α+∠β,(3)當P在BD延長線上時,∠CPA=∠α﹣∠β;當P在DB延長線上時,∠CPA=∠β﹣∠α.
【解析】
試題(1)過點P作PE∥AB,則有PE∥AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補得到∠A+∠APE=180°,∠C+∠CPE=180°,再根據(jù)∠APC=∠APE+∠CPE和已知∠APE和∠CPE度數(shù)即可求出∠APC的角度。(2)過P作PE∥AB交AC于E,則有AB∥PE∥CD,進而得到∠α=∠APE,∠β=∠CPE,再根據(jù)∠APC=∠APE+∠CPE,即可用α、β來表示∠APC的度數(shù);(3)根據(jù)題意畫出圖形,當P在BD延長線上時,P作PE∥AB交AC于E,則有AB∥PE∥CD,可得到∠CPA=∠β﹣∠α,當如圖所示,當P在DB延長線上時,P作PE∥AB交AC于E,則有AB∥PE∥CD,可得到∠CPA=∠β﹣∠α;
試題解析:
(1)解:過點P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
(2)∠APC=∠α+∠β,
理由:如圖2,過P作PE∥AB交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠α=∠APE,∠β=∠CPE,
∴∠APC=∠APE+∠CPE=∠α+∠β;
(3)如圖所示,當P在BD延長線上時,
∠CPA=∠α﹣∠β;
如圖所示,當P在DB延長線上時,
∠CPA=∠β﹣∠α.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿EF折疊,點C落在A處,點D落在D′處.若AB=3,BC=9,則折痕EF的長為( )
A.
B.4
C.5
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一個軸對稱圖形,A(3,-2),B(3,﹣6)兩點在此圖形上且互為對稱點,若此圖形上有一個點C(﹣2,+1).
(1)求點C的對稱點的坐標.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=﹣i,i4=(i2)2=(﹣1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.
計算:(1)i.i2.i3.i4
(2)i+i2+i3+i4+…+i2017+i2018.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCD的A、C兩點測得該塔頂端F的仰角分別為45°和60°,矩形建筑物寬度AD=20m,高度DC=30m則信號發(fā)射塔頂端到地面的高度(即FG的長)為( )
A.(35 +55)m
B.(25 +45)m
C.(25 +75)m
D.(50+20 )m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,ME和NF分別垂直平分AB和AC.
(1)若BC =10cm,試求△AMN的周長.
(2)在△ABC中,AB = AC,∠BAC = 100°,求∠MAN的度數(shù).
(3) 在 (2) 中,若無AB = AC的條件,你還能求出∠MAN的度數(shù)嗎?若能,請求出;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,直線AE是經(jīng)過點A的任一直線,BD⊥AE于D,CE⊥AE于E,若BD>CE,試解答:
(1)AD與CE的大小關系如何?請說明理由;
(2)若BD=5,CE=2,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com