【題目】如圖,∠1=∠2,∠3=∠B,F(xiàn)G⊥AB于G,猜想CD與AB的位置關(guān)系,并說明理由.
【答案】垂直;理由見解析
【解析】
試題分析:根據(jù)∠3=∠B得出ED∥BC,根據(jù)FG⊥AB得出∠AGF=90°,根據(jù)外角的性質(zhì)得出∠AGF=∠B+∠2,結(jié)合∠ADC=∠1+∠3,∠1=∠2,∠3=∠B從而得出∠ADC=∠AGF=90°,從而得到垂直.
試題解析:猜想CD⊥AB.
理由如下: ∵∠3=∠B(已知),∴ED∥BC(同位角相等,兩直線平行).
∵FG⊥AB(已知),∴∠AGF=90°(垂直定義).
∵∠AGF是△BFG的一個外角, ∴∠AGF=∠B+∠2(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和).
∵∠ADC=∠1+∠3,而∠1=∠2,∠3=∠B, ∴∠ADC=∠AGF=90°(等量代換).
∴CD⊥AB(垂直定義).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形。若,AB=2,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P=210×3×58 , 則P可用科學(xué)記數(shù)法表示為( )
A.12×108
B.1.2×109
C.1.2×108
D.12×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的變長為1,求點B經(jīng)過(1)(2)變換的路徑總長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com