如圖,已知Rt△ABC中,∠C=90°,∠A=30°,在直線BC或AC上取一點P,使得△PAB是等腰三角形,則符合條件的P點有( )

A.2個
B.4個
C.6個
D.8個
【答案】分析:本題是開放性試題,根據(jù)題意,畫出圖形結(jié)合求解.
解答:解:第1個點在AC上,作線段AB的垂直平分線,交AC于點P,則有PA=PB;
第2個點是以A為圓心,以AB長為半徑截取AP=AB,交AC延長線上于點P;
第3個點是以A為圓心,以AB長為半徑截取AP=AB,在上邊于CA延長線上交于點P;
第4個點是以B為圓心,以BA長為半徑截取BP=BA,與AC的延長線交于點P;
第5個點是以B為圓心,以BA長為半徑截取BP=BA,與BC在左邊交于點P;
第6個點是以A為圓心,以AB長為半徑截取AP=AB,與BC在右邊交于點P;
∴符合條件的點P有6個點.
故選C.
點評:本題考查了等腰三角形的判定來解決實際問題,其關(guān)鍵是根據(jù)題意,畫出符合實際條件的圖形,再利用數(shù)學知識來求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點D,BD的垂直平分線分別交AB,BC于點E、F,CD=CG.
(1)請以圖中的點為頂點(不增加其他的點)分別構(gòu)造兩個菱形和兩個等腰梯形.那么,構(gòu)成菱形的四個頂點是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個頂點是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點B作弦BF交AD于點精英家教網(wǎng)E,交⊙O于點F,且AE=BE.
(1)求證:
AB
=
AF

(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點,PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點,連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點A做AE⊥AB,且AE=15,連接BE交AC于點P.
(1)求PA的長;
(2)以點A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習冊答案