【題目】如圖,經(jīng)過(guò)原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A.過(guò)點(diǎn)P(1,m)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(B、C不重合).連接CB,CP.
(1)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)當(dāng)m>1時(shí),連接CA,問(wèn)m為何值時(shí)CA⊥CP?
(3)過(guò)點(diǎn)P作PE⊥PC且PE=PC,問(wèn)是否存在m,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的m的值,并定出相對(duì)應(yīng)的點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:當(dāng)m=3時(shí),y=﹣x2+6x
令y=0得﹣x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
當(dāng)x=1時(shí),y=5
∴B(1,5)
∵拋物線y=﹣x2+6x的對(duì)稱軸為直線x=3
又∵B,C關(guān)于對(duì)稱軸對(duì)稱
∴BC=4
(2)
解:連接AC,過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H(如圖1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴ ,
∵拋物線y=﹣x2+2mx的對(duì)稱軸為直線x=m,其中m>1,
又∵B,C關(guān)于對(duì)稱軸對(duì)稱,
∴BC=2(m﹣1),
∵B(1,2m﹣1),P(1,m),
∴BP=m﹣1,
又∵A(2m,0),C(2m﹣1,2m﹣1),
∴H(2m﹣1,0),
∴AH=1,CH=2m﹣1,
∴ ,
∴m=
(3)
解:∵B,C不重合,∴m≠1,
(1.)當(dāng)m>1時(shí),BC=2(m﹣1),PM=m,BP=m﹣1,
(i)若點(diǎn)E在x軸上(如圖1),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
,
∴△BPC≌△MEP,
∴BC=PM,
∴2(m﹣1)=m,
∴m=2,此時(shí)點(diǎn)E的坐標(biāo)是(2,0);
(ii)若點(diǎn)E在y軸上(如圖2),
過(guò)點(diǎn)P作PN⊥y軸于點(diǎn)N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴m﹣1=1,
∴m=2,
此時(shí)點(diǎn)E的坐標(biāo)是(0,4);
(2.)當(dāng)0<m<1時(shí),BC=2(1﹣m),PM=m,BP=1﹣m,
(i)若點(diǎn)E在x軸上(如圖3),
易證△BPC≌△MEP,
∴BC=PM,
∴2(1﹣m)=m,
∴m= ,此時(shí)點(diǎn)E的坐標(biāo)是( ,0);
(ii)若點(diǎn)E在y軸上(如圖4),
過(guò)點(diǎn)P作PN⊥y軸于點(diǎn)N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴1﹣m=1,∴m=0(舍去),
綜上所述,當(dāng)m=2時(shí),點(diǎn)E的坐標(biāo)是(2,0)或(0,4),
當(dāng)m= 時(shí),點(diǎn)E的坐標(biāo)是( ,0).
【解析】(1)把m=3,代入拋物線的解析式,令y=0解方程,得到的非0解即為和x軸交點(diǎn)的橫坐標(biāo),再求出拋物線的對(duì)稱軸方程,進(jìn)而求出BC的長(zhǎng);(2)過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H(如圖1)由已知得∠ACP=∠BCH=90°,利用已知條件證明△ACH∽△PCB,根據(jù)相似的性質(zhì)得到: ,再用含有m的代數(shù)式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本題要分當(dāng)m>1時(shí),BC=2(m﹣1),PM=m,BP=m﹣1和當(dāng)0<m<1時(shí),BC=2(1﹣m),PM=m,BP=1﹣m,兩種情況分別討論,再求出滿足題意的m值和相對(duì)應(yīng)的點(diǎn)E坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“美麗河池 清潔鄉(xiāng)村 美化校園”的號(hào)召,紅水河中學(xué)計(jì)劃在學(xué)校公共場(chǎng)所安裝溫馨提示牌和垃圾箱.已知,安裝5個(gè)溫馨提示牌和6個(gè)垃圾箱需730元,安裝7個(gè)溫馨提示牌和12個(gè)垃圾箱需1310元.
(1)安裝1個(gè)溫馨提示牌和1個(gè)垃圾箱各需多少元?
(2)安裝8個(gè)溫馨提示牌和15個(gè)垃圾箱共需多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為10cm的正方形ABCD中,P為AB邊上任意一點(diǎn)(P不與A、B兩點(diǎn)重合),連結(jié)DP,過(guò)點(diǎn)P作PE⊥DP,垂足為P,交BC于點(diǎn)E,則BE的最大長(zhǎng)度為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=﹣x+2的圖象與x軸,y軸分別交于A、B兩點(diǎn),以AB為腰,作等腰Rt△ABC,則直線BC的解析式為( 。
A. y=x+2 B. y=﹣x+2 C. y=﹣x+2 D. y=x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋中裝有紅、黃、白三種顏色球共100個(gè),它們除顏色外都相同,其中黃球個(gè)數(shù)是白球個(gè)數(shù)的2倍少5個(gè).已知從袋中摸出一個(gè)球是紅球的概率是 .
(1)求袋中紅球的個(gè)數(shù);
(2)求從袋中摸出一個(gè)球是白球的概率;
(3)取走10個(gè)球(其中沒(méi)有紅球)后,求從剩余的球中摸出一個(gè)球是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地決策,自來(lái)水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如下不完整統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問(wèn)題:
(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù);
(3)如果自來(lái)水公司將基本用水量定為每戶25噸,那么該地20萬(wàn)用戶中約有多少用戶的用水全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形紙片ABC中,AB=3,AC=4,D為斜邊BC中點(diǎn),第1次將紙片折疊,使點(diǎn)A與點(diǎn)D重合,折痕與AD交于點(diǎn)P1;設(shè)P1D的中點(diǎn)為D1 , 第2次將紙片折疊,使點(diǎn)A與點(diǎn)D1重合,折痕與AD交于點(diǎn)P2;設(shè)P2D1的中點(diǎn)為D2 , 第3次將紙片折疊,使點(diǎn)A與點(diǎn)D2重合,折痕與AD交于點(diǎn)P3;…;設(shè)Pn﹣1Dn﹣2的中點(diǎn)為Dn﹣1 , 第n次將紙片折疊,使點(diǎn)A與點(diǎn)Dn﹣1重合,折痕與AD交于點(diǎn)Pn(n>2),則AP6的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個(gè)數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com