【題目】(2017湖南省長(zhǎng)沙市,第12題,3分)如圖,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的一點(diǎn)H重合(H不與端點(diǎn)C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD的周長(zhǎng)為m,△CHG的周長(zhǎng)為n,則的值為( 。
A. B. C. D. 隨H點(diǎn)位置的變化而變化
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(3,4)是反比例函數(shù)圖象上一點(diǎn),則下列說(shuō)法正確的是( 。
A. 圖象分別位于二、四象限B. 點(diǎn)(2,﹣6)在函數(shù)圖象上
C. 當(dāng)x<0時(shí),y隨x的增大而減小D. 當(dāng)y≤4時(shí),x≥3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是邊長(zhǎng)為12的正三角形,AD是邊BC上的高線,CF是外角ACE的平分線,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)B,C不重合),∠APQ =60°,射線PQ分別與邊AC,射線CF交于點(diǎn)N,Q.
(1)求證:△ABP∽△PCN;
(2)不管點(diǎn)P運(yùn)動(dòng)到何處,在不添輔助線的情況下,除第(1)小題中的一對(duì)相似三角形外,請(qǐng)寫(xiě)出圖中其它的所有相似三角形;
(3)當(dāng)點(diǎn)P從BD的中點(diǎn)運(yùn)動(dòng)到DC的中點(diǎn)時(shí),點(diǎn)N都隨著點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng).在此過(guò)程中,試探究:能否求出點(diǎn)N運(yùn)動(dòng)的路徑長(zhǎng)?若能,請(qǐng)求出這個(gè)長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在直線y=x-1上,設(shè)過(guò)點(diǎn)P的直線交拋物線y=x2于A(a,a2),B(b,b2)兩點(diǎn),當(dāng)滿足PA=PB時(shí),稱(chēng)點(diǎn)P為“優(yōu)點(diǎn)”.
(1)當(dāng)a+b=0時(shí),求“優(yōu)點(diǎn)”P(pán)的橫坐標(biāo);
(2)若“優(yōu)點(diǎn)”P(pán)的橫坐標(biāo)為3,求式子18a-9b的值;
(3)小安演算發(fā)現(xiàn):直線y=x-1上的所有點(diǎn)都是“優(yōu)點(diǎn)”,請(qǐng)判斷小安發(fā)現(xiàn)是否正確?如果正確,說(shuō)明理由;如果不正確,舉出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤(pán),A,B兩個(gè)轉(zhuǎn)盤(pán)被分成幾個(gè)面積相等的扇形,并且在每個(gè)扇形內(nèi)標(biāo)上數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后,如果指針指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一個(gè)扇形內(nèi)為止.
(1)只轉(zhuǎn)動(dòng)A轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后指針指向數(shù)字2的概率.
(2)如果同時(shí)轉(zhuǎn)動(dòng)A,B兩個(gè)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,將兩個(gè)指針?biāo)傅臄?shù)字相加,那么和是偶數(shù)的概率是多少,用樹(shù)形圖或表格說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)發(fā)現(xiàn):如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.當(dāng)點(diǎn)A位于什么上時(shí),線段AC的長(zhǎng)取得最大值,且最大值為多少(用含a,b的式子表示)
(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請(qǐng)找出圖中與BE相等的線段,并說(shuō)明理由;
②直接寫(xiě)出線段BE長(zhǎng)的最大值.
(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(6,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫(xiě)出線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解九年級(jí)男同學(xué)的體育考試準(zhǔn)備情況.隨機(jī)抽取部分男同學(xué)進(jìn)行了1000米跑測(cè)試按照成績(jī)分為優(yōu)秀、良好、合格與不合格四個(gè)等級(jí).學(xué)校繪制了如下不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中“良好”所對(duì)應(yīng)的圓心角度數(shù)是 ;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校九年級(jí)有600名男生,請(qǐng)估計(jì)成績(jī)未達(dá)到良好的有多少名?
(3)某班甲、乙兩位成績(jī)獲“優(yōu)秀”的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動(dòng)會(huì)1000米比賽,預(yù)賽分為A,B,C,D四組進(jìn)行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三體育考試選擇項(xiàng)目中,選擇籃球項(xiàng)目和排球項(xiàng)目的學(xué)生比較多為了解學(xué)生掌握籃球技巧和排球技巧的水平情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)從選擇籃球和排球的學(xué)生中各隨機(jī)抽取16人,進(jìn)行了體育測(cè)試,測(cè)試成績(jī)十分制如下:
整理、描述數(shù)據(jù)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
10 | |||||
排球 | 1 | 1 | 2 | 7 | 5 |
籃球 |
說(shuō)明:成績(jī)分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格
分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
項(xiàng)目 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
排球 | 10 | ||
籃球 |
得出結(jié)論
如果全校有160人選擇籃球項(xiàng)目,達(dá)到優(yōu)秀的人數(shù)約為______人;
初二年級(jí)的小明和小軍看到上面數(shù)據(jù)后,小明說(shuō):排球項(xiàng)目整體水平較高小軍說(shuō):籃球項(xiàng)目整體水平較高.
你同意______的看法,理由為______至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017安徽。┤鐖D,游客在點(diǎn)A處做纜車(chē)出發(fā),沿A﹣B﹣D的路線可至山頂D處,假設(shè)AB和BD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長(zhǎng).
(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com