如圖,已知拋物線y=ax2+bx﹣4經(jīng)過(guò)A(﹣8,0),B(2,0)兩點(diǎn),直線x=﹣4交x軸于點(diǎn)C,交拋物線于點(diǎn)D.

(1)求該拋物線的解析式;
(2)點(diǎn)P在拋物線上,點(diǎn)E在直線x=﹣4上,若以A,O,E,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)若B,D,C三點(diǎn)到同一條直線的距離分別是d1,d2,d3,問(wèn)是否存在直線l,使?若存在,請(qǐng)直接寫(xiě)出d3的值;若不存在,請(qǐng)說(shuō)明理由.
解:(1)∵拋物線y=ax2+bx﹣4經(jīng)過(guò)A(﹣8,0),B(2,0)兩點(diǎn),
,解得:。
∴拋物線的解析式為。
(2)∵點(diǎn)P在拋物線上,點(diǎn)E在直線x=﹣4上,
設(shè)點(diǎn)P的坐標(biāo)為(m,,點(diǎn)E的坐標(biāo)為(﹣4,n),
如圖1,∵點(diǎn)A(﹣8,0),∴AO=8。

①當(dāng)AO為一邊時(shí),EP∥AO,且EP=AO=8,
∴|m+4|=8,解得:m1=﹣12,m2=4。
∴P1(﹣12,14),P2(4,6)。
②當(dāng)AO為對(duì)角線時(shí),則點(diǎn)P和點(diǎn)E必關(guān)于點(diǎn)C成中心對(duì)稱,故CE=CP。
,解得:
∴P3(﹣4,﹣6)。
綜上所述,當(dāng)P1(﹣12,14),P2(4,6),P3(﹣4,﹣6)時(shí),A,O,E,P為頂點(diǎn)的四邊形是平行四邊形。
(3)存在4條符合條件的直線。d3的值為。

試題分析:(1)利用待定系數(shù)法求出拋物線的解析式。
(2)平行四邊形可能有多種情形,如答圖1所述,需要分類討論:
①以AO為一邊的平行四邊形,有2個(gè);
②以AO為對(duì)角線的平行四邊形,有1個(gè),此時(shí)點(diǎn)P和點(diǎn)E必關(guān)于點(diǎn)C成中心對(duì)稱。
(3)存在4條符合條件的直線。
如圖2所示,連接BD,過(guò)點(diǎn)C作CH⊥BD于點(diǎn)H,

由題意得C(﹣4,0),B(2,0),D(﹣4,﹣6),
∴OC=4,OB=2,CD=6。∴△CDB為等腰直角三角形。
∴CH=CD•sin45°=6×=。
∵BD=2CH,∴BD=。
①∵CO:OB=2:1,
∴過(guò)點(diǎn)O且平行于BD的直線l1滿足條件。
作BE⊥直線l1于點(diǎn)E,DF⊥直線l1于點(diǎn)F,設(shè)CH交直線l1于點(diǎn)G,
∴BE=DF,即:d1=d2。
,即,∴d3=2d1,∴
∴CG=CH,即d3=
②如圖2,在△CDB外作直線l2∥DB,延長(zhǎng)CH交l2于點(diǎn)G′,使CH=HG′,
∴d3=CG′=2CH=。
③如圖3,過(guò)H,O作直線l3,作BE⊥l3于點(diǎn)E,DF⊥l3于點(diǎn)F,CG⊥l3于點(diǎn)G,

由①可知,DH=BH,則BE=DF,即:d1=d2
∵CO:OB=2:1,∴。
作HI⊥x軸于點(diǎn)I,
∴HI=CI=CB=3,∴OI=4﹣3=1。
。
∵△OCH的面積=×4×3=×d3,∴d3=。
④如圖3,根據(jù)等腰直角三角形的對(duì)稱性,可作出直線l4,易證:
,d3=。
綜上所述,存在直線l,使.d3的值為:。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點(diǎn),橋拱最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為橋拱底部的兩點(diǎn),且DE∥AB,點(diǎn)E到直線AB的距離為7m,則DE的長(zhǎng)為   m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線的對(duì)稱軸是直線x=,與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,并且點(diǎn)A的坐標(biāo)為(—1,0).

(1)求拋物線的解析式;
(2)過(guò)點(diǎn)C作CD//x軸交拋物線于點(diǎn)D,連接AD交y軸于點(diǎn)E,連接AC,設(shè)△AEC的面積為S1, △DEC的面積為S2,求S1:S2的值;
(3)點(diǎn)F坐標(biāo)為(6,0),連接D,在(2)的條件下,點(diǎn)P從點(diǎn)E出發(fā),以每秒3個(gè)單位長(zhǎng)的速度沿E→C→D→F勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)F出發(fā),以每秒2個(gè)單位長(zhǎng)的速度沿F→A勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另外一點(diǎn)也隨之停止運(yùn)動(dòng).若點(diǎn)P、Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是直角三角形?請(qǐng)直接寫(xiě)出所有符合條件的t值..

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,一個(gè)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,0)、B(3,0)兩點(diǎn).

(1)寫(xiě)出這個(gè)二次函數(shù)的對(duì)稱軸;
(2)設(shè)這個(gè)二次函數(shù)的頂點(diǎn)為D,與y軸交于點(diǎn)C,它的對(duì)稱軸與x軸交于點(diǎn)E,連接AD、DE和DB,當(dāng)△AOC與△DEB相似時(shí),求這個(gè)二次函數(shù)的表達(dá)式。
[提示:如果一個(gè)二次函數(shù)的圖象與x軸的交點(diǎn)為A,那么它的表達(dá)式可表示為:]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點(diǎn).

(1)寫(xiě)出A、B兩點(diǎn)的坐標(biāo)(坐標(biāo)用m表示);
(2)若二次函數(shù)圖象的頂點(diǎn)P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=﹣1.

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.

(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫(huà)出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫(xiě)出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點(diǎn)為A,過(guò)點(diǎn)A作x軸的垂線,交直線y2=x+1于點(diǎn)B,點(diǎn)P在拋物線上,當(dāng)SPAB≤6時(shí),求點(diǎn)P的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣4,0),B(﹣1,3),C(﹣3,3)

(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對(duì)稱軸為直線l,該圖象上的點(diǎn)P(m,n)在第三象限,其關(guān)于直線l的對(duì)稱點(diǎn)為M,點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為N,若四邊形OAPN的面積為20,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線的最小值是     

查看答案和解析>>

同步練習(xí)冊(cè)答案