【題目】某商店分兩次購進兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:

購進數(shù)量

購進所需費用(元)

第一次

30

40

3800

第二次

40

30

3200

1)求、兩種商品每件的進價分別是多少元?

2)商場決定種商品以每件30元出售,種商品以每件100元出售.為滿足市場需求,需購進、兩種商品共1000件,且種商品的數(shù)量不少于種商品數(shù)量的4倍,設購進種商品件,獲得的利潤為元,

①請列出的函數(shù)關系式

②求出獲利最大的進貨方案,并確定最大利潤.

【答案】1種商品每件的進價為20元,種商品每件的進價為80元;(2)①;②購進種商品800件、種商品200件時,銷售利潤最大,最大利潤為12000元.

【解析】

1)根據(jù)表格中的數(shù)據(jù)可以列出相應的二元一次方程組,從而可以求得A、B兩種商品每件的進價;

2)①根據(jù)題意可以得到利潤和購買A種商品數(shù)量的函數(shù)關系,②根據(jù)種商品的數(shù)量不少于種商品數(shù)量的4倍,可以得到購買A種商品數(shù)量的取值范圍,再根據(jù)一次函數(shù)的性質,即可得到獲利最大的進貨方案,并確定最大利潤.

解:(1)設種商品每件的進價為元,種商品每件的進價為元,

根據(jù)題意得:

解得:

種商品每件的進價為20元,種商品每件的進價為80元;

2)①設購進種商品件,獲得的利潤為元,則購進種商品件,

根據(jù)題意得:

②∵種商品的數(shù)量不少于種商品數(shù)量的4倍,

,

解得:

∵在中,

的值隨的增大而增大,

時,取最大值,最大值為,

當購進種商品800件、種商品200件時,銷售利潤最大,最大利潤為12000元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線lx軸相交于點M(3,0),與y軸相交于點N(0,4),點AMN的中點,反比例函數(shù)y=(x0)的圖象過點A.

(1)求直線l和反比例函數(shù)的解析式;

(2)在函數(shù)y=(k0)的圖象上取異于點A的一點C,作CBx軸于點B,連接OC交直線l于點P,若△ONP的面積是△OBC面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,ABC為直角,以AB為直徑作OAC于點D,點EBC中點,連結DEDB.

(1)求證:DEO相切;

(2)若C=30°,求BOD的度數(shù);

(3)在(2)的條件下,若O半徑為2, 求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(9)已知:ABCD的兩邊ABAD的長是關于x的方程的兩個實數(shù)根.

1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB相交,BAC=38°

1)如圖①,若D為弧AB的中點,求∠ABC和∠ABD的大。

2)如圖②,過點D作⊙O的切線,與AB的延長線交于點P,若DPAC,求∠OCD的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就學生體育活動興趣愛好的問題,隨機調查了本校某班的學生,并根據(jù)調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調查中,喜歡籃球項目的同學有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學校有800名學生,估計全校學生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補充完整.

3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果店張阿姨以每斤4元的價格購進某種水果若干斤,然后以每斤6元的價格出售,每天可售出150斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價銷售.

(1)若將這種水果每斤的售價降低x元,則每天的銷售量是   斤(用含x的代數(shù)式表示);

(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知y=(m2+m)+(m﹣3)x+m2x的二次函數(shù),求出它的解析式.

(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點坐標并求出函數(shù)的最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O,半徑OC=6,D為半徑OC上異于O,C的點,過點DABOC,OA,BE在線段AB,AECEP在線段EC的延長線上,PBPE

(1)OD=2,求弦AB的長;

(2)當點D在線段OC不含端點上移動時,直線PBO有怎樣的位置關系?請說明理由

(3)QO上的一個動點,若點DOC中點時,線段PQ的最小值為多少?請說明理由

查看答案和解析>>

同步練習冊答案