【題目】某商店分兩次購進、兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:
購進數(shù)量 | 購進所需費用(元) | ||
|
| ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1)求、兩種商品每件的進價分別是多少元?
(2)商場決定種商品以每件30元出售,種商品以每件100元出售.為滿足市場需求,需購進、兩種商品共1000件,且種商品的數(shù)量不少于種商品數(shù)量的4倍,設購進種商品件,獲得的利潤為元,
①請列出與的函數(shù)關系式
②求出獲利最大的進貨方案,并確定最大利潤.
【答案】(1)種商品每件的進價為20元,種商品每件的進價為80元;(2)①;②購進種商品800件、種商品200件時,銷售利潤最大,最大利潤為12000元.
【解析】
(1)根據(jù)表格中的數(shù)據(jù)可以列出相應的二元一次方程組,從而可以求得A、B兩種商品每件的進價;
(2)①根據(jù)題意可以得到利潤和購買A種商品數(shù)量的函數(shù)關系,②根據(jù)種商品的數(shù)量不少于種商品數(shù)量的4倍,可以得到購買A種商品數(shù)量的取值范圍,再根據(jù)一次函數(shù)的性質,即可得到獲利最大的進貨方案,并確定最大利潤.
解:(1)設種商品每件的進價為元,種商品每件的進價為元,
根據(jù)題意得:,
解得:.
答 :種商品每件的進價為20元,種商品每件的進價為80元;
(2)①設購進種商品件,獲得的利潤為元,則購進種商品件,
根據(jù)題意得:
②∵種商品的數(shù)量不少于種商品數(shù)量的4倍,
∴,
解得:.
∵在中,
∵
∴的值隨的增大而增大,
當時,取最大值,最大值為,
當購進種商品800件、種商品200件時,銷售利潤最大,最大利潤為12000元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l與x軸相交于點M(3,0),與y軸相交于點N(0,4),點A為MN的中點,反比例函數(shù)y=(x>0)的圖象過點A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y=(k>0)的圖象上取異于點A的一點C,作CB⊥x軸于點B,連接OC交直線l于點P,若△ONP的面積是△OBC面積的3倍,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC為直角,以AB為直徑作⊙O交AC于點D,點E為BC中點,連結DE,DB.
(1)求證:DE與⊙O相切;
(2)若∠C=30°,求∠BOD的度數(shù);
(3)在(2)的條件下,若⊙O半徑為2, 求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關于x的方程的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=38°.
(1)如圖①,若D為弧AB的中點,求∠ABC和∠ABD的大。
(2)如圖②,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據(jù)調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調查中,喜歡籃球項目的同學有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學校有800名學生,估計全校學生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果店張阿姨以每斤4元的價格購進某種水果若干斤,然后以每斤6元的價格出售,每天可售出150斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知y=(m2+m)+(m﹣3)x+m2是x的二次函數(shù),求出它的解析式.
(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點坐標并求出函數(shù)的最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OC=6,D為半徑OC上異于O,C的點,過點D作AB⊥OC,交⊙O于A,B,點E在線段AB上,AE=CE,點P在線段EC的延長線上,PB=PE.
(1)若OD=2,求弦AB的長;
(2)當點D在線段OC(不含端點)上移動時,直線PB與⊙O有怎樣的位置關系?請說明理由;
(3)點Q是⊙O上的一個動點,若點D為OC中點時,線段PQ的最小值為多少?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com