數(shù)學課上,張老師出示圖1和下面的條件:如圖1,兩個等腰直角三角板ABC和DEF有一條邊在同一條直線l上,DE=2,AB=1.將直線EB繞點E逆時針旋轉(zhuǎn)45°,交直線AD于點M.將圖1中的三角板ABC沿直線l向右平移,設C、E兩點間的距離為k.
解答問題:
(1)①當點C與點F重合時,如圖2所示,可得的值為       ;
②在平移過程中,的值為           (用含k的代數(shù)式表示);
(2)將圖2中的三角板ABC繞點C逆時針旋轉(zhuǎn),原題中的其他條件保持不變.當點A落在線段DF上時,如圖3所示,請補全圖形,計算的值;
(3)將圖1中的三角板ABC繞點C逆時針旋轉(zhuǎn)α度,0<α≤90,原題中的其他條件保持不變.計算 的值(用含k的代數(shù)式表示).

試題分析:(1)①根據(jù)題意可得EM垂直平分DF,直線AF∥EM,從而轉(zhuǎn)化為,繼而得出結(jié)論;②仿照①的思路進行求解即可;
(2)先補全圖形,連接AE,分別求出AM及DM的值,然后可確定比值.
(3)先畫出圖形,然后證明△ABG≌△CBE,繼而推出AG∥DE,△AGM∽△DEM,利用相似三角形的性質(zhì)即可得出答案.
(1)如圖,

∵∠MEB=45°,∠AFB=45°,
∴EM垂直且平分DF,AF∥EM,

②如圖

由①可得;
(2)連接AE,

∵△ABC,△DEF均為等腰直角三角形,DE=2,AB=1,
∴EF=2,BC=1,∠DEF=90°,∠4=∠5=45°
∴DF=2,AC=,∠EFB=90°,
∴DF=2AC,AD=,
∴點A為CD的中點,
∴EA⊥DF,EA平分∠DEF,
∴∠MAE=90°,∠AEF=45°,AE=
∵∠BEM=45°,
∴∠1+∠2=∠3+∠2=45°,
∴∠1=∠3,
∴△AEM∽△FEB,

∴AM=,
∴DM=AD-AM=?

(3)過B作BE的垂線交直線EM于點G,連接AG、BG,

∴∠EBG=90°,
∵∠BEM=45°,
∴∠EGB=∠BEM=45°,
∴BE=BG,
∵△ABC為等腰直角三角形,
∴BA=BC,∠ABC=90°,
∴∠1=∠2,
∴△ABG≌△CBE,
∴AG=EC=k,∠3=∠4,
∵∠3+∠6=∠5+∠4=45°,
∴∠6=∠5,
∴AG∥DE,
∴△AGM∽△DEM,

考點: 相似形綜合題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形ABCD中,AC=8,BD=6,將△ABD沿AC方向向右平移到△A′B′D′的位置,若平移距離為2,則陰影部分的面積為_________

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在△ABC中,D、E、F分別為三邊的中點,G點在邊AB上,且DG平分△ABC的周長,設BC=a、AC=b、AB=c.
(1)求線段BG的長;
(2)求證:DG平分∠EDF;
(3)連接CG,如圖2,若△GBD ∽△GDF,求證:BG⊥CG.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,下列形狀的邊框,不相似的是(  )
A. B. C. D.  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標;
(2)以原點O為位似中心,在原點的另一側(cè)畫出△A2B2C2,使,并寫出點A2的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將兩塊全等的直角三角形紙片△ABC和△DEF疊放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,如圖,將△DEF繞點D旋轉(zhuǎn),點D與AB的中點重合,DE,DF分別交AC于點M,N,使DM=MN則重疊部分(△DMN)的面積為      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,O為矩形ABCD的中心,M為BC邊上一點,N為DC邊上一點,ON⊥OM,若AB=6,AD=4,設OM=x,ON=y,則y與x的函數(shù)關(guān)系式為________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖ΔABC中,D、E、F分別是AB、AC、BC的中點.

(1)若AB=10cm,AC=6cm,則四邊形ADFE的周長為______cm
(2)若ΔABC周長為6cm,面積為12cm2,則ΔDEF的周長是 _____,面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是
A.∠ABD=∠CB.∠ADB=∠ABC
C.D.

查看答案和解析>>

同步練習冊答案