作業(yè)寶如圖1,在長方形ABCD中,AB=12厘米,BC=6厘米.點P沿AB邊從點A開始向點B以2厘米/秒的速度移動;點Q沿DA邊從點D開始向點A以1厘米/秒的速度移動.如果P、Q同時出發(fā),用t(秒)表示移動的時間,那么:
(1)DQ=______厘米,AP=______厘米(用含t的代數(shù)式表示)
(2)如圖1,當(dāng)t=______秒時,線段AQ與線段AP相等?
(3)如圖2,P、Q到達(dá)B、A后繼續(xù)運動,P點到達(dá)C點后都停止運動.當(dāng)t為何值時,線段AQ的長等于線段CP的長的一半.

解:(1)DQ=t厘米,AP=2t厘米;

(2)由題意,得AQ=(6-t)cm,
當(dāng)AQ=AP時,6-t=2t 
解得:t=2 
故當(dāng)t=2秒時,線段AQ與線段AP相等;

(3)由題意,得
AQ=(t-6)cm,CP=(18-2t)cm,
∴t-6=(18-2t),
解得:t=7.5.
答:當(dāng)t行7.5秒時,線段AQ的長等于線段CP的長的一半.
故答案為:t,2t;2.
分析:(1)根據(jù)路程=速度×?xí)r間,可得DQ、AP的長度;
(2)當(dāng)t秒時,DQ=tAQ=6-t,AP=2t,由6-t=2t建立方程求出其解即可;
(3)當(dāng)Q在AB邊上時,AQ=6-t,CP=18-2t,由AQ的長等于線段CP的長的一半建立方程求出其解即可.
點評:本題是一道幾何動點問題,考查了列一元一次方程解實際問題的運用,解答時根據(jù)題意建立方程是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、(1)如圖1,在長方形ABCD中,AB=3cm,BC=2cm,則AB與CD之間的距離為
2
cm;
(2)如圖2,若∠
1
=∠
2
,則AD∥BC;
(3)如圖3,DE∥BC,CD是∠ACB的平分線,∠ACB=50°,則∠EDC=
25
度;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

31、如圖,要在長方形木板上截一個平行四邊形,使它的一組對邊在長方形木板的邊緣上,另一組對邊中的一條邊為AB.請過點C畫出與AB平行的另一條邊CD.(要求:不寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在長方形紙片ABCD中,AB=mAD,其中m≥1,將它沿EF折疊(點E、F分別在邊AB、CD上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD相交于點P,連接EP.設(shè)
AM
AD
=n,其中0<n≤1.

(1)如圖2,當(dāng)n=1(即M點與D點重合),m=2時,則
BE
AE
=
5
3
5
3
;
(2)如圖3,當(dāng)n=
1
2
(M為AD的中點),m的值發(fā)生變化時,求證:EP=AE+DP;
(3)如圖1,當(dāng)m=2(AB=2AD),n的值發(fā)生變化時,
BE-CF
AM
的值是否發(fā)生變化?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年福建省龍巖市八年級下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:單選題

如圖, 在長方形ABCD中,AB=3厘米.在CD邊上找一點E,沿直線AE把△ABE折疊,若點D恰好落在BC邊上點F處,且△ABF的面積是6平方厘米,則DE的長為( 。

A.2cmB.3cmC.2.5cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆福建省龍巖市八年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖, 在長方形ABCD中,AB=3厘米.在CD邊上找一點E,沿直線AE把△ABE折疊,若點D恰好落在BC邊上點F處,且△ABF的面積是6平方厘米,則DE的長為( 。

A.2cm             B.3cm              C.2.5cm            D.cm

 

查看答案和解析>>

同步練習(xí)冊答案