(2011•南寧)如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,則梯形殘缺底角的度數(shù)是
80°
80°
分析:根據(jù)梯形的定義:只有一組對(duì)邊平行的四邊形為梯形可得:AB∥CD,再根據(jù)平行線的性質(zhì):同旁內(nèi)角互補(bǔ)可求出梯形殘缺底角的度數(shù).
解答:解:延長(zhǎng)AD和CD使其相交于D,
∵四邊形ABCD為梯形,
∴AB∥CD,
∴∠A+∠D=180°,
∵∠A=100°,
∵∠D=80°,
∴梯形殘缺底角的度數(shù)是80°.
故答案為:80°
點(diǎn)評(píng):本題考查了梯形的性質(zhì):一組對(duì)邊平行和平行線的性質(zhì):同旁內(nèi)角互補(bǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南寧)如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC的頂點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系.
(1)點(diǎn)A的坐標(biāo)為
(2,8)
(2,8)
,點(diǎn)C的坐標(biāo)為
(6,6)
(6,6)

(2)將△ABC向左平移7個(gè)單位,請(qǐng)畫出平移后的△A1B1C1.若M為△ABC內(nèi)的一點(diǎn),其坐標(biāo)為(a,b),則平移后點(diǎn)M的對(duì)應(yīng)點(diǎn)M1的坐標(biāo)為
(a-7,b)
(a-7,b)

(3)以原點(diǎn)O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對(duì)應(yīng)邊的比為1:2.請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出△A2B2C2,并寫出點(diǎn)A2的坐標(biāo):
(1,4)或(-1,-4)
(1,4)或(-1,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南寧)如圖,已知CD是⊙O的直徑,AC⊥CD,垂足為C,弦DE∥OA,直線AE、CD相交于點(diǎn)B.
(1)求證:直線AB是⊙O的切線.
(2)當(dāng)AC=1,BE=2,求tan∠OAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南寧)如圖,在△ABC中,∠ACB=90°,∠A=15°,AB=8,則AC•BC的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南寧)如圖,三視圖描述的實(shí)物形狀是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南寧)如圖,在圓錐形的稻草堆頂點(diǎn)P處有一只貓,看到底面圓周上的點(diǎn)A處有一只老鼠,貓沿著母線PA下去抓老鼠,貓到達(dá)點(diǎn)A時(shí),老鼠已沿著底面圓周逃跑,貓?jiān)诤竺嫜刂嗤穆肪追,在圓周的點(diǎn)B處抓到了老鼠后沿母線BP回到頂點(diǎn)P處.在這個(gè)過程中,假設(shè)貓的速度是勻速的,貓出發(fā)后與點(diǎn)P距離s,所用時(shí)間為t,則s與t之間的函數(shù)關(guān)系圖象是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案