【題目】如圖1,拋物線軸交于兩點(diǎn),過點(diǎn)的直線分別與軸及拋物線交于點(diǎn)

1)求直線和拋物線的表達(dá)式

2)動(dòng)點(diǎn)從點(diǎn)出發(fā),在軸上沿的方向以每秒1個(gè)單位長度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為何值時(shí),為直角三角形?請(qǐng)直接寫出所有滿足條件的的值.

3)如圖2,將直線沿軸向下平移4個(gè)單位后,與軸,軸分別交于,兩點(diǎn),在拋物線的對(duì)稱軸上是否存在點(diǎn),在直線上是否存在點(diǎn),使的值最?若存在,求出其最小值及點(diǎn),的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】1,;(23412;(3)存在,,,最小值

【解析】

1)利用待定系數(shù)法求解即可;

2)先求點(diǎn)D坐標(biāo),再求點(diǎn)C坐標(biāo),然后分類討論即可;

3)通過做對(duì)稱點(diǎn)將折線轉(zhuǎn)化成兩點(diǎn)間距離,用兩點(diǎn)之間線段最短來解答即可.

解:(1)把代入

解得,

∴拋物線解析式為,

∵過點(diǎn)B的直線

∴把代入,解得,

∴直線解析式為

2)聯(lián)立,解得,所以,

直線軸交于點(diǎn),則,

根據(jù)題意可知線段,則點(diǎn)

,

因?yàn)?/span>為直角二角形

①若,則,

化簡得:

②若,則,

化簡得

③若,則

化簡得

綜上所述,3412,滿足條件

3)在拋物線上取點(diǎn)的對(duì)稱點(diǎn),過點(diǎn)于點(diǎn),交拋物線對(duì)稱軸于點(diǎn),過點(diǎn)于點(diǎn),此時(shí)最小

拋物線的對(duì)稱軸為直線,則的對(duì)稱點(diǎn)為,

直線的解析式為

因?yàn)?/span>,設(shè)直線,

代入得,則直線

聯(lián)立,解得,則,

聯(lián)立,解得,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問題:如圖1,在中,,,,點(diǎn)邊上的任意一點(diǎn).將沿過點(diǎn)的直線折疊,使點(diǎn)落在斜邊上的點(diǎn)處.問是否存在是直角三角形?若不存在,請(qǐng)說明理由;若存在,求出此時(shí)的長度.

探究展示:勤奮小組很快找到了點(diǎn)、的位置.

如圖2,作的角平分線交于點(diǎn),此時(shí)沿所在的直線折疊,點(diǎn)恰好在上,且,所以是直角三角形.

問題解決:

1)按勤奮小組的這種折疊方式,的長度為

2/span>)創(chuàng)新小組看完勤奮小組的折疊方法后,發(fā)現(xiàn)還有另一種折疊方法,請(qǐng)?jiān)趫D3中畫出來.

3)在(2)的條件下,求出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是某浴室花灑實(shí)景圖,圖2是該花灑的側(cè)面示意圖.已知活動(dòng)調(diào)節(jié)點(diǎn)B可以上下調(diào)整高度,離地面CD的距離BC160cm.設(shè)花灑臂與墻面的夾角為α,可以扭動(dòng)花灑臂調(diào)整角度,且花灑臂長AB30cm.假設(shè)水柱AE垂直AB直線噴射,小華在離墻面距離CD120cm處淋。

1)當(dāng)α30°時(shí),水柱正好落在小華的頭頂上,求小華的身高DE

2)如果小華要洗腳,需要調(diào)整水柱AE,使點(diǎn)E與點(diǎn)D重合,調(diào)整的方式有兩種:

其他條件不變,只要把活動(dòng)調(diào)節(jié)點(diǎn)B向下移動(dòng)即可,移動(dòng)的距離BF與小華的身高DE有什么數(shù)量關(guān)系?直接寫出你的結(jié)論;

活動(dòng)調(diào)節(jié)點(diǎn)B不動(dòng),只要調(diào)整α的大小,在圖3中,試求α的度數(shù).

(參考數(shù)據(jù):1.73,sin8.6°≈0.15sin36.9°≈0.60tan36.9°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx+c的圖象與x軸分別交于A、B兩點(diǎn),與y軸交于點(diǎn)C.若tanABC=3,一元二次方程ax2+bx+c=0的兩根為﹣8、2

1)求二次函數(shù)的解析式;

2)直線l繞點(diǎn)AAB為起始位置順時(shí)針旋轉(zhuǎn)到AC位置停止,l與線段BC交于點(diǎn)DPAD的中點(diǎn).

①求點(diǎn)P的運(yùn)動(dòng)路程;

②如圖2,過點(diǎn)DDE垂直x軸于點(diǎn)E,作DFAC所在直線于點(diǎn)F,連結(jié)PEPF,在l運(yùn)動(dòng)過程中,∠EPF的大小是否改變?請(qǐng)說明理由;

3)在(2)的條件下,連結(jié)EF,求PEF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)為創(chuàng)建《國家義務(wù)教育優(yōu)質(zhì)均衡發(fā)展區(qū)》,自2016年以來加大了教育經(jīng)費(fèi)的投入,2016年該區(qū)投入教育經(jīng)費(fèi)9000萬元,2018年投入教育經(jīng)費(fèi)12960萬元,假設(shè)該區(qū)這兩年投入教育經(jīng)費(fèi)的年平均增長率相同

1)求這兩年該區(qū)投入教育經(jīng)費(fèi)的年平均增長率

2)若該區(qū)教育經(jīng)費(fèi)的投入還將保持相同的年平均增長率,請(qǐng)你預(yù)算2019年該區(qū)投入教育經(jīng)費(fèi)多少萬元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時(shí),小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系h20t5t2.下列敘述正確的是( 。

A. 小球的飛行高度不能達(dá)到15m

B. 小球的飛行高度可以達(dá)到25m

C. 小球從飛出到落地要用時(shí)4s

D. 小球飛出1s時(shí)的飛行高度為10m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一組有規(guī)律的圖案,它們是由邊長相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為(  )

A.8073B.8072C.8071D.8070

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)對(duì)寧波市相關(guān)的市場物價(jià)調(diào)研,某批發(fā)市場內(nèi)甲種水果的銷售利潤y1(千元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系,乙種水果的銷售利潤(千元)與進(jìn)貨量x(噸)之間的函數(shù)關(guān)系近似于二次函數(shù),函數(shù)圖象如圖所示.

1)求出x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)如果該市場準(zhǔn)備進(jìn)甲、乙兩種水果共8噸,設(shè)乙水果的進(jìn)貨量為t噸,寫出這兩種水果所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種水果各進(jìn)多少噸時(shí),獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為 [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:

當(dāng)m=-3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,;

當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長度大于;

當(dāng)m<0時(shí),函數(shù)在時(shí),y隨x的增大而減小;

當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過x軸上一個(gè)定點(diǎn).

其中正確的結(jié)論有________ .(只需填寫序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案