(2004•大連)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.
求證:AD•CE=DE•DF;
說明:(1)如果你經(jīng)歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);
(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.
注意:選、偻瓿勺C明得8分;選、谕瓿勺C明得6分;選、弁瓿勺C明得4分.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.

【答案】分析:連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質,證得直線CD是⊙O的切線,若證AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.
解答:(1)證明:連接AF,
∵DF是⊙O的直徑,
∴∠DAF=90°,
∴∠F+∠ADF=90°,
∵∠F=∠ABD,∠ADG=∠ABD,
∴∠F=∠ADG,
∴∠ADF+∠ADG=90°
∴直線CD是⊙O的切線
∴∠EDC=90°,
∴∠EDC=∠DAF=90°;

(2)選、偻瓿勺C明
證明:∵直線CD是⊙O的切線,
∴∠CDB=∠A.
∵∠CDB=∠CEB,
∴∠A=∠CEB.
∴AD∥EC.
∴∠DEC=∠ADF.
∵∠EDC=∠DAF=90°,
∴△ADF∽△DEC.
∴AD:DE=DF:EC.
∴AD•CE=DE•DF.
點評:此題考查了切線的性質與判定、弦切角定理、相似三角形的判定與性質等知識.注意乘積的形式可以轉化為比例的形式,通過證明三角形相似得出.還要注意構造直徑所對的圓周角是圓中的常見輔助線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•大連)如圖,拋物線y=-x2+5x+n經(jīng)過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年遼寧省大連市中考數(shù)學試卷(解析版) 題型:解答題

(2004•大連)如圖,拋物線y=-x2+5x+n經(jīng)過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年遼寧省大連市中考數(shù)學試卷(解析版) 題型:選擇題

(2004•大連)如圖,直線y=kx+b與x軸交于點(-4,0),則y>0時,x的取值范圍是( )

A.x>-4
B.x>0
C.x<-4
D.x<0

查看答案和解析>>

科目:初中數(shù)學 來源:2004年遼寧省大連市中考數(shù)學試卷(解析版) 題型:選擇題

(2004•大連)如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是( )

A.30°
B.60°
C.90°
D.45°

查看答案和解析>>

同步練習冊答案