如圖.拋物線y=-x2-2x+3與x軸相交于點A和點B,與y軸交于點C.設點M是第二象限內拋物線上的一點,且S△MAB=6,點M的坐標為________,若點P在線段BA上以每秒1個單位長度的速度從點B向點A運動(不與B,A重合),同時,點Q在射線AC上以每秒2個單位長度的速度從A向C運動.設運動的時間為t秒,當t為________時,△APQ的面積最大,最大面積是________.

(-2,3 )    2    2
分析:①設出點M的坐標為(x,-x2-2x+3),然后表示出其面積×(-x2-2x+3)×4=6,通過解此方程可以求得M點的坐標;
②求出S與t的函數(shù)關系式后利用二次函數(shù)的性質求出S的最大值.
解答:解:①設M點的坐標為(x,-x2-2x+3).
∵點M在第二象限,所以-x2-2x+3>0,
所以×(-x2-2x+3)×4=6,
解之,得x1=0,x2=-2,
當x=0時,y=3(不合題意,舍去);
當x=-2時,y=3.
所以M點的坐標為(-2,3);
②令-x2-2x+3=0,則(x+3)(x-1)=0,
解得,x1=-3,x2=1,
A(-3,0),B(1,0),C(0,3);
故AB=4,PA=4-t,
∵AO=3,CO=3,
∴△AOC是等腰直角三角形,AQ=2t,
所以Q點的縱坐標為t,
S=×t×(4-t)=-(t-2)2+2t(0<t<4)
∵S=-2(t2-4t+4-4)=-2(t-2)2+2,
∴當t=2時,△APQ最大,最大面積是2
故答案是:(-2,3);2;2
點評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點有拋物線方程和一元二次方程的關系、三角形的面積求法.在求有關動點問題時要注意分析題意分情況討論結果.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,拋物線C1,C2關于x軸對稱;拋物線C1,C3關于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線的頂點坐標為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標;
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標;
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習冊答案