【題目】已知二次函數(shù)>0)的對(duì)稱軸與x軸交于點(diǎn)B,與直線l:交于點(diǎn)C,點(diǎn)A是該二次函數(shù)圖像與直線l在第二象限的交點(diǎn),點(diǎn)D是拋物線的頂點(diǎn),已知AC∶CO=1∶2,∠DOB=45°,△ACD的面積為2.
(1) 求拋物線的函數(shù)關(guān)系式;
(2) 若點(diǎn)P為拋物線對(duì)稱軸上的一個(gè)點(diǎn),且∠POC=45°,求點(diǎn)P坐標(biāo).
【答案】(1);(2) P1(-4,12) ), P2(-4,)
【解析】試題分析:(1)把拋物線解析式化為頂點(diǎn)式,可得對(duì)稱軸為直線 x=-2m,得到C的坐標(biāo),由∠DOB=45°,得到BD=BO=2m,即可得到頂點(diǎn)D坐標(biāo).過(guò)A作AE⊥x軸于E,可求出A的坐標(biāo),由△ACD的面積為2,得到m=2,進(jìn)一步求得頂點(diǎn)D的坐標(biāo),從而得到拋物線的解析式;
(2)過(guò)P作PM⊥OA于M,則有PM=OM,由直線OA的解析式為:,設(shè)M(n,),得到直線PM的解析式,進(jìn)而得到P的坐標(biāo),因?yàn)?/span>PM=OM,由兩點(diǎn)間的距離公式列方程,求出n的值,即可得到P的坐標(biāo).
試題解析:解:(1) ,∴對(duì)稱軸為直線 x=-2m,∴OB=2m,C(-2m,m).∵∠DOB=45°,∴BD=BO=2m,∴則頂點(diǎn)D(-2m,2m).過(guò)A作AE⊥x軸于E.∵AC:CO=1:2,∴EB:OB=1:2.∵OB=2m,∴EB=m,∴OE=3m,∴A(-3m,).∵△ACD的面積為2,∴m·m=2,解得:m=±2 .∵m>0,∴m=2,∴ D(-4,4),∴,解得:a=,∴.
(2) 如圖,過(guò)P作PM⊥OA于M.∵∠POC=45°,∴PM=OM.∵直線OA的解析式為:,設(shè)M(n,),∴直線PM為,即:,當(dāng)x=-4時(shí),,∴P(-4,).∵PM=OM,∴,解得:n=-8或n=,當(dāng)n=-8時(shí),=12,當(dāng)n=時(shí),=,∴P(-4,12) )或P(-4,) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,P為BC上一點(diǎn),PR⊥AB,垂足為R,PS⊥AC,垂足為S,∠CAP=∠APQ,PR=PS,下面的結(jié)論:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正確的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AC、BD相交于點(diǎn)O,點(diǎn)E、F在BD上,且BE=DF.連
接AE、CF.
(1)求證△AOE≌△COF;
(2)若AC⊥EF,連接AF、CE,判斷四邊形AECF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某條公共汽車(chē)線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車(chē)票收入支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費(fèi)用,提高車(chē)票價(jià)格;建議(Ⅱ)不改變車(chē)票價(jià)格,減少支出費(fèi)用. 下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
④ ③ ② ①
A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(a,0)、B(b,0)(a≠0),a、b滿足+b2+2bc+c2=0
(1) 直接寫(xiě)出a與b的關(guān)系
(2) 如圖,將線段AB沿y軸的正方向平移m個(gè)單位得到線段PQ,點(diǎn)M在線段PQ上,QM=3MP,過(guò)M作MF∥PA交QA于點(diǎn)F,連接BM,BM平分∠PMF.若BM=,求m的值
(3) 如圖,點(diǎn)C在第一象限內(nèi),且滿足CA=OA,點(diǎn)E在x軸上,AE=BC,連接CE,取CE的中點(diǎn)N,連接NO.若∠BCA=α,求∠NOC(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分別為邊AC、AB的中點(diǎn).
(1)求∠A的度數(shù);
(2)求EF和AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩地相距80km,甲、乙兩人騎車(chē)分別從A,B兩地同時(shí)相向而行,他們都保持勻速行駛.如圖,l1,l2分別表示甲、乙兩人離B地的距離y(km)與騎車(chē)時(shí)間x(h)的函數(shù)關(guān)系.根據(jù)圖象得出的下列結(jié)論,正確的個(gè)數(shù)是( 。
①甲騎車(chē)速度為30km/小時(shí),乙的速度為20km/小時(shí);
②l1的函數(shù)表達(dá)式為y=80﹣30x;
③l2的函數(shù)表達(dá)式為y=20x;
④小時(shí)后兩人相遇.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度數(shù);
(2)當(dāng)AD=2時(shí),求對(duì)角線BD的長(zhǎng)和梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線互相垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E,連接CE,CB.
(1)求證:CE=CB;
(2)若AC=,CE=,求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com