如圖,在平面直角坐標(biāo)系中,拋物線=-++經(jīng)過A(0,-4)、B(,0)、 C(,0)三點(diǎn),且-=5.
(1)求、的值;(4分)
(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對 角線的菱形;(3分)
(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以OB為對角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個菱形是否為正方形?若不存在,請說明理由.(3分)
解:(1)解法一:
∵拋物線=-++經(jīng)過點(diǎn)A(0,-4),
∴=-4 ……1分
又由題意可知,、是方程-++=0的兩個根,
∴+=, =-=6··································································· 2分
由已知得(-)=25
又(-)=(+)-4=-24
∴ -24=25
解得=± ··········································································································· 3分
當(dāng)=時,拋物線與軸的交點(diǎn)在軸的正半軸上,不合題意,舍去.
∴=-. ·········································································································· 4分
解法二:∵、是方程-++c=0的兩個根,
即方程2-3+12=0的兩個根.
∴=,··········································································· 2分
∴-==5,
解得 =±······························································································· 3分
(以下與解法一相同.)
(2)∵四邊形BDCE是以BC為對角線的菱形,根據(jù)菱形的性質(zhì),點(diǎn)D必在拋物線的對稱軸上, 5分
又∵=---4=-(+)+ ································· 6分
∴拋物線的頂點(diǎn)(-,)即為所求的點(diǎn)D.······································· 7分
(3)∵四邊形BPOH是以OB為對角線的菱形,點(diǎn)B的坐標(biāo)為(-6,0),
根據(jù)菱形的性質(zhì),點(diǎn)P必是直線=-3與
拋物線=---4的交點(diǎn), ···························································· 8分
∴當(dāng)=-3時,=-×(-3)-×(-3)-4=4,
∴在拋物線上存在一點(diǎn)P(-3,4),使得四邊形BPOH為菱形. ·················· 9分
四邊形BPOH不能成為正方形,因?yàn)槿绻倪呅?i>BPOH為正方形,點(diǎn)P的坐標(biāo)只能是(-3,3),但這一點(diǎn)不在拋物線上.······································································································· 10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
|
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com