【題目】如圖,點B、C分別在直線y=2x和y=kx上,點A、D是x軸上的兩點,且四邊形ABCD是正方形.
(1)若正方形ABCD的邊長為2,則點B、C的坐標分別為 .
(2)若正方形ABCD的邊長為a,求k的值.
【答案】(1)(1,2),(3,2)(2)
【解析】
(1)根據(jù)正方形的邊長,運用正方形的性質(zhì)表示出點B、C的坐標;
(2)根據(jù)正方形的邊長,運用正方形的性質(zhì)表示出C點的坐標,再將C的坐標代入函數(shù)中,從而可求得k的值.
(1)∵正方形邊長為2,
∴AB=2,
在直線y=2x中,當y=2時,x=1,
∴B(1,2),
∵OA=1,OD=1+2=3,
∴C(3,2),
故答案為:(1,2),(3,2);
(2)∵正方形邊長為a,
∴AB=a,
在直線y=2x中,當y=a時,x=,
∴OA=,OD=,
∴C(,a),
將C(,a)代入y=kx,得a=k×,
解得:k=,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】在長方形ABCD中,AB=3,BC=4,動點P從點A開始按A→B→C→D的方向運動到點D.如圖,設動點P所經(jīng)過的路程為x,△APD的面積為y.(當點P與點A或D重合時,y=0)
(1)寫出y與x之間的函數(shù)解析式;
(2)畫出此函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了改善辦學條件,計劃購置一批電子白板和一批筆記本電腦,經(jīng)投標,購買1塊電子白板比買3臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買1塊電子白板和一臺筆記本電腦各需多少元?
(2)根據(jù)該校實際情況,需購買電子白板和筆記本電腦的總數(shù)為396,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?
(3)上面的哪種購買方案最省錢?按最省錢方案購買需要多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD的長AB為5,寬BC為4,E是BC邊上的一個動點,AE⊥EF,EF交CD于點F.設BE=x,F(xiàn)C=y,則點E從點B運動到點C時,能表示y關于x的函數(shù)關系的大致圖像是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給定一列數(shù),我們把這列數(shù)中的第一個數(shù)記為a1,第二個數(shù)記為a2,第三個數(shù)記為a3,依此類推,第n個數(shù)記為an(n為正整數(shù)),如下面這列數(shù)2,4,6,8,10中,a1=2,a2=4,a3=6,a4=8,a5=10.規(guī)定運算sum(a1:an)=a1+a2+a3+…+an.即從這列數(shù)的第一個數(shù)開始依次加到第n個數(shù),如在上面的一列數(shù)中,sum(a1:a3)=2+4+6=12.
(1)已知一列數(shù)1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,求a3,sum(a1:a10)的值.
(2)已知這列數(shù)1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,…,按照規(guī)律可以無限寫下去,求a2018,sum(a1:a2018)的值.
(3)在(2)的條件下否存在正整數(shù)n使等式|sum(a1:an)|=50成立?如果有,寫出n的值,如果沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】受地震的影響,某超市雞蛋供應緊張,需每天從外地調(diào)運雞蛋1200斤.超市決定從甲、乙兩大型養(yǎng)殖場調(diào)運雞蛋,已知甲養(yǎng)殖場每天最多可調(diào)出800斤,乙養(yǎng)殖場每天最多可調(diào)出900斤,從兩養(yǎng)殖場調(diào)運雞蛋到超市的路程和運費如表:
到超市的路程(千米) | 運費(元/斤千米) | |
甲養(yǎng)殖場 | 200 | 0.012 |
乙養(yǎng)殖場 | 140 | 0.015 |
(1)若某天調(diào)運雞蛋的總運費為2670元,則從甲、乙兩養(yǎng)殖場各調(diào)運了多少斤雞蛋?
(2)設從甲養(yǎng)殖場調(diào)運雞蛋x斤,總運費為W元,試寫出W與x的函數(shù)關系式,怎樣安排調(diào)運方案才能使每天的總運費最?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD對折,得折痕PQ,展開后再沿MN翻折,使點C恰好落在折痕PQ上的點C′處,點D落在D′處,其中M是BC的中點且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com