如圖,已知拋物線交x軸于C(x1,0),D(x2,0)兩點,(x1<x2)且
(1)試確定m的值;
(2)過點A(-1,-5)和拋物線的頂點M的直線交x軸于點B,求B點的坐標(biāo);
(3)設(shè)點P(a,b)是拋物線上點C到點M之間的一個動點(含C、M點),是以PO為腰、底邊OQ在x軸上的等腰三角形,過點Q作x軸的垂線交直線AM于點R,連結(jié)PR。設(shè)的面積為S,求S與a之間的函數(shù)關(guān)系式。
解:(1)因為拋物線交x軸于C(x1,0),D(x2,0)兩點(x1<x2)且
又
解得或,而m=3使,不合題意,故舍去
(2)由(1)知拋物線的解析式為
頂點M的坐標(biāo)為(2,4)。如圖
設(shè)直線AM的解析式為,
則有
解得
當(dāng)y=0時,
B點的坐標(biāo)為(,0)
(3)依題意,點P(a,b)是拋物線上點C到點M之間的一個動點,
Q點坐標(biāo)為(2a,0)
由(2)知直線AM為
當(dāng)x=2a時,
點R的坐標(biāo)為(2a,6a-2)
過點P作于點N
當(dāng)時,
當(dāng)時,不存在;
當(dāng)時,
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線交x軸的正半軸于點A,交y軸于點B.
1.求A、B兩點的坐標(biāo),并求直線AB的解析式;
2.設(shè)()是直線上的一點,Q是OP的中點(O是原點),以PQ為對角線作正方形PEQF.若正方形PEQF與直線AB有公共點,求x的取值范圍;
3.在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省初三第二學(xué)期質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線交x軸的正半軸于點A,交y軸于點B.
1.求直線AB的解析式;
2.設(shè)P(x,y)(x>0)是直線y = x上的一點,Q是OP 的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;
3.在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com