【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,OA=5,OA與⊙O相交于點(diǎn)P,AB與⊙O相切于點(diǎn)B, BP的延長(zhǎng)線交直線l于點(diǎn)C.
(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若PC=,求⊙O的半徑和線段PB的長(zhǎng);
(3)若在⊙O上存在點(diǎn)Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
【答案】(1)AB=AC;理由見解析(2)⊙O的半徑為3,線段PB的長(zhǎng)為;(3)≤r<5.
【解析】試題分析:(1)連接OB,根據(jù)切線的性質(zhì)和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根據(jù)等腰三角形的判定推出即可;
(2)延長(zhǎng)AP交⊙O于D,連接BD,設(shè)圓半徑為r,則OP=OB=r,PA=5-r,根據(jù)AB=AC推出52-r2=(2)2-(5-r)2,求出r,證△DPB∽△CPA,得出,代入求出即可;
(3)根據(jù)已知得出Q在AC的垂直平分線上,作出線段AC的垂直平分線MN,作OE⊥MN,求出OE<r,求出r范圍,再根據(jù)相離得出r<5,即可得出答案.
試題解析:(1)AB=AC,理由如下:
連接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延長(zhǎng)AP交⊙O于D,連接BD,
設(shè)圓半徑為r,則OP=OB=r,PA=5-r,
則AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2)2-(5-r)2,
∴52-r2=(2)2-(5-r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直徑,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴,
∴,
解得:PB=.
∴⊙O的半徑為3,線段PB的長(zhǎng)為;
(3)作出線段AC的垂直平分線MN,作OE⊥MN,則可以推出OE=AC=AB=
又∵圓O與直線MN有交點(diǎn),
∴OE=≤r,
,
25-r2≤4r2,
r2≥5,
∴r≥,
又∵圓O與直線相離,
∴r<5,
即≤r<5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明去爬山,在山腳看山頂角度為30°,小明在坡比為5:12的山坡上走1300米,此時(shí)小明看山頂?shù)慕嵌葹?0°,求山高( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列直線中,經(jīng)過第一、二、三象限的是( 。
A. 直線y= x-1 ; B. 直線y= -x+1; C. 直線y=x+1; D. 直線y=-x-1 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形、矩形、菱形都具有的特征是( )
A. 對(duì)角線互相平分; B. 對(duì)角線相等;
C. 對(duì)角線互相垂直; D. 對(duì)角線平分一組對(duì)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項(xiàng)式乘法中不能用平方差公式計(jì)算的是( )
A. (a3+b3)(a3﹣b3) B. (a2+b2)(b2﹣a2)
C. (2x2y+1)(2x2y﹣1) D. (x2﹣2y)(2x+y2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn),與軸的另一個(gè)交點(diǎn)為A(-2,0).
(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點(diǎn)P,使△AOP的面積為3,若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com