【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線和△ABC的外接圓相交于點D,連接BD,BE,CE,若∠CBD=32°,則∠BEC的度數(shù)為( )

A.128°
B.126°
C.122°
D.120°

【答案】C
【解析】解:在⊙O中,∵∠CBD=32°,

∵∠CAD=32°,

∵點E是△ABC的內(nèi)心,

∴∠BAC=64°,

∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,

∴∠BEC=180°﹣58°=122°.

所以答案是:C.

【考點精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識,掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角,以及對圓周角定理的理解,了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點是直線上第一象限的點,點的坐標(biāo)是,是坐標(biāo)原點,的面積為,則關(guān)于的函數(shù)關(guān)系式(取值范圍)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,則大樓AB的高度為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,點為直角坐標(biāo)系的原點,的坐標(biāo)分別為.點同時從原點出發(fā),分別作勻速運動,點沿以每秒1個單位向終點運動,點沿以每秒2個單位向終點運動.當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.設(shè)運動時間為秒.

1)請用表示點的坐標(biāo)為__________;

2)是否存在某個時間,使得以點和四邊形中的任意兩個頂點為頂點的四邊形為平行四邊形?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在黨中央實施“精準(zhǔn)扶貧”政策的號召下,大力開展科技扶貧的惠農(nóng)富農(nóng),老張在科技人員的指導(dǎo)下,改良柑橘品種,去年他家的柑橘喜獲豐收,而且質(zhì)優(yōu)味美,客商聞訊前來采購,經(jīng)協(xié)商:采購價y(元/噸)與采購量x(噸)之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)老張種植柑橘的成本是800元/噸,當(dāng)客商采購量是多少時,老張在這次銷售柑橘時獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索題:

如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律!

如果將(a+bnn為非負(fù)整數(shù))的每一項按字母a的次數(shù)由大到小排列,就可以得到下面的等式:

a+b0=1.它只有一項,系數(shù)為1;

a+b1=a+b展開式中的系數(shù)1、1恰好對應(yīng)圖中第二行的數(shù)字;

a+b2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;

a+b3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、33、1恰好對應(yīng)圖中第四行的數(shù)字.

1)請認(rèn)真觀察此圖,寫出(a+b4的展開式,(a+b4=

2)類似地,請你探索并畫出(a-b0,(a-b1,(a-b2,(a-b3的展開式中按a次數(shù)從大到小排列的項的系數(shù)對應(yīng)的三角形.

3)探究解決問題:求93+3×92+3×9+1 的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊ABC中,點EAB上的動點,點E與點A、B不重合,點DCB的延長線上,且EC=ED

1)如圖1,當(dāng)BE=AE時,求證:BD=AE

2)當(dāng)BE≠AE時,“BD=AE”能否成立?若不成立,請直接寫出BDAE數(shù)理關(guān)系,若成立,請給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD中,對角線 AC BD 相交于點 O,過點 A BD的垂線,垂足為 E.已知∠EAD=3BAE,求∠EAO 的度數(shù)( )

A.22B.67C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行“建國70周年”征文比賽,已知每篇參賽征文成績記m(60≤m≤100),組委會從1000篇征文隨機抽取了部分參賽征文,統(tǒng)計了它們的成績,并繪制了如下不完整的兩幅統(tǒng)計圖表.

請根指以上信息,解答下列問題

(1)征文比賽成績頻數(shù)分布表中,a= ,b= ,c=

(2)補全征文比賽成績頻數(shù)分布直方圖;

(3)80分以上(80)的征文將被評為一等獎,試估計全市獲得一等獎?wù)魑牡钠獢?shù).

查看答案和解析>>

同步練習(xí)冊答案