已知長方形ABCO,O為坐標原點,點B的坐標為(8,6),A、C分別在坐標軸上,P是線段BC上動點,設,已知點D在第一象限且是直線上的一點,若△APD是等腰直角三角形。

(1)求點D的坐標;(4分)

(2)直線向右平移6個單位后,在該直線上,是否存在點D,使△APD是等腰直角三角形?若存在,請求出這些點的坐標;若不存在,請說明理由。(6分)

 


 

解:(1)如圖①,作DE⊥軸于E點,作PF⊥軸于F點,

∵△DAP為等腰直角三角形,且AD=AP,

則△ADE≌△PAF,AE=PF=8,OE=14。

設點D的橫坐標為,由,

∴點D的坐標是(4,14)。...............4分

(2)直線向右平移6個單位后的解析式為.  

     如圖②,當∠ADP=90°時,AD=PD,易得D點坐標(4,2);

如圖③,當∠APD=90°時,AP=PD時,設點P的坐標為(8,),

則D點坐標為(,),由,得

∴D點坐標(,);                               

如圖④,當∠ADP=90°時,AD=PD時,同理可求得D點坐標(,)。

綜上,符合條件的點D存在,坐標分別為(4,2),(,),(,)。...............6分

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知長方形ABCO中,邊AB=12,BC=6,以點O為原點,OA、OC所在的直線為y軸和x軸建立直角坐標系.
(1)若點A的坐標為(0,6),則B、C兩點的坐標分別為
(12,6)
(12,6)
(12,0)
(12,0)

(2)若在y軸上存在一點M,使△ACM的面積是長方形ABCO面積的
13
,則點M的坐標為
(0,2)或(0,10)
(0,2)或(0,10)

(3)若點P從C點出發(fā),以2單位/秒的速度向CO方向移動(不超過點O),點Q從原點O出發(fā),以1單位/秒的速度向OA方向移動(不超過點A);P、Q兩點同時出發(fā),設移動時間為t秒,則:
①AQ=
6-t
6-t
,CP=
2t
2t
(用含t的式子表示);
②在它們移動過程中,四邊形OPBQ的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知長方形ABCO,O為坐標原點,點B的坐標為(8,6),A、C分別在坐標軸上,P是線段BC上動點,設PC=m,已知點D在第一象限且是直線y=2x+6上的一點,若△APD是等腰直角三角形.
(1)求點D的坐標;
(2)直線y=2x+6向右平移6個單位后,在該直線上,是否存在點D,使△APD是等腰直角三角形?若存在,請求出這些點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知長方形ABCO,O為坐標原點,點B的坐標為(8,6),A、C分別在坐標軸上,P是線段BC上動點,設PC=m,已知點D在第一象限且是直線y=2x+6上的一點,若△APD是等腰直角三角形.
(1)求點D的坐標;
(2)直線y=2x+6向右平移6個單位后,在該直線上,是否存在點D,使△APD是等腰直角三角形?若存在,請求出這些點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直線與長方形ABCO的邊OC、BC分別交于點E、F,已知OA=3,OC=4,則△CEF的面積是(   。

A.6              B.3             C.12            D.

查看答案和解析>>

同步練習冊答案