【題目】解分式方程、分式的化簡求值
(1) ;
(2) ;
(3),其中 ;
(4),其中x是不等式組的解集中符合題意的整數(shù).
【答案】(1);(2)無解;(3),;(4),.
【解析】
(1)去分母將原方程化為整式方程,然后求解計算,注意結(jié)果要檢驗;
(2)去分母將原方程化為整式方程,然后求解計算,注意結(jié)果要檢驗;
(3)先進(jìn)行分式的混合運算的化簡,注意先做括號里面的,然后代入求值;
(4)先進(jìn)行分式的混合運算的化簡,注意先做括號里面的,然后解不等式組確定x的取值,然后帶入計算即可.
解:(1)
經(jīng)檢驗時,
∴是原分式方程的解;
(2)
經(jīng)檢驗時,
∴不是原分式方程的解;
∴原分式方程無解;
(3)
=
=
=
當(dāng)時,=;
(4)
=
=
=
解不等式①得
解不等式②得
∴不等式組的解集為
由題意可知x為整數(shù)且,
∴
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,把△ABC繞AC邊的中點M旋轉(zhuǎn)后得△DEF,若直角頂點F恰好落在AB邊上,且DE邊交AB邊于點G,若AC=4,BC=3,則AG的長為( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x與x軸交于O,A兩點,P為拋物線上一點,過點P的直線y=x+m與對稱軸交于點Q.
(1)這條拋物線的對稱軸是 ,直線PQ與x軸所夾銳角的度數(shù)是 ;
(2)若兩個三角形面積滿足S△POQ=S△PAQ,求m的值;
(3)當(dāng)點P在x軸下方的拋物線上時,過點C(2,2)的直線AC與直線PQ交于點D,求:①PD+DQ的最大值;②PDDQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市2013年啟動省級園林城市創(chuàng)建工作,計劃2015年下半年順利通過驗收評審.該市為加快道路綠化及防護(hù)綠地等各項建設(shè).在城市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩市相距150千米,分別從A、B處測得國家級風(fēng)景區(qū)中心C處的方位角如圖所示,風(fēng)景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關(guān)部門設(shè)計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風(fēng)景區(qū),請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā)勻速相向而行,大樓C位于AB之間,甲與乙相遇在AC中點處,然后兩車立即掉頭,以原速原路返回,直到各自回到出發(fā)點.設(shè)甲、乙兩車距大樓C的距離之和為y(千米),甲車離開A地的時間為t(小時),y與t的函數(shù)圖象所示,則第21小時時,甲乙兩車之間的距離為________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=2,把邊BC繞點B逆時針旋轉(zhuǎn)30°得到線段BP,連接AP并延長交CD于點E,連接PC,則三角形PCE的面積為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com