【題目】如圖,在RtABC中,∠C=90°,把ABCAC邊的中點M旋轉后得DEF,若直角頂點F恰好落在AB邊上,且DE邊交AB邊于點G,若AC=4,BC=3,則AG的長為(  )

A.B.C.D.1

【答案】A

【解析】

連接CF,先證明△ACF為直角三角形,再由△ABC中等面積法求出CF,進而求出AF;再證明△DEF為直角三角形,且GDE的中點,最后AG=AF-GF即可求解.

解:連接CF,如下圖所示:

MAC的中點,∴MC=MA

M是旋轉中心,CM點旋轉后的落點為F

MC=MF

∴∠MCF=MFC,

MA=MC=MF

∴∠MFA=A

在△ACF中,由內角和定理知:∠A +MFA+ACF+CFM=180°

2AFM+2CFM=180°

∴∠AFC=90°

∴△ACF為直角三角形,CFAB

△ABC等面積法知:,且AB=5

代入數(shù)據(jù)解得CF=

∵∠A+B=90°,∠A+ACF=90°

∴∠ACF=B

DFEF,

∴∠AFD+AFE=90°

∵∠AFD+MFC=90°

∴∠AFE=MFC=ACF

知:∠B=AFE

又由旋轉知:∠B=E

∴∠AFE=E,即GF=GE

由旋轉知:∠A=D

又∠A=AFM

∴∠D=AFM,

GF=GD

GF=GE= GD

GRtDEF斜邊DE上的中點

故答案為:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BCCD上,下列結論:CE=CF;②∠AEB=75°BE+DF=EF;S正方形ABCD=

其中正確的序號是   (把你認為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式和不等式組,并把它的解集在數(shù)軸上表示出來.

1

2

3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲同學手中藏有三張分別標有數(shù)字、、1的卡片,乙同學手中藏有三張分別標有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.

(1)請你用樹形圖或列表法列出所有可能的結果;

(2)現(xiàn)制定一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請用概率知識解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為a的正方形中減掉一個邊長為b的小正方形(ab)把余下的部分再剪拼成一個長方形.

1)如圖1,陰影部分的面積是: ;

2)如圖2,是把圖1重新剪拼成的一個長方形,陰影部分的面積是 ;

3)比較兩陰影部分面積,可以得到一個公式是

4)運用你所得到的公式,計算:99.8×100.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,以為邊在外作等邊三角形,過點的垂線,垂足為,與相交于點,連接.

1)說明:;

2)若,,是直線上的一點.則當在何處時,最小,并求此時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】認真觀察圖26.14個圖中陰影部分構成的圖案,回答下列問題:

1)請寫出這四個圖案都具有的兩個共同特征.

特征1_________________________________________________;

特征2_________________________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的圖像反映的過程是:甲乙兩人同時從地出發(fā),以各自的速度勻速向地行駛,甲先到地停留半小時后,按原路以另一速度勻速返回,直至與乙相遇.乙的速度為, 表示甲乙兩人相距的距離, 表示乙行駛的時間.現(xiàn)有以下個結論:①兩地相距;②點的坐標為;③甲去時的速度為;④甲返回的速度是.以上個結論中正確的是_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解分式方程、分式的化簡求值

1 ;

2

3,其中

4,其中x是不等式組的解集中符合題意的整數(shù).

查看答案和解析>>

同步練習冊答案