如圖,梯形ABCD中,AD∥BC,AB = BC = DC,點(diǎn)E、F分別在AD、AB上,且.
(1)求證:;
(2)連結(jié)AC,若,求的度數(shù).
通過三角形全等求證;30
解析試題分析:證明:旋轉(zhuǎn)△BCF使BC與CD重合
∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,
∴△FCE≌△F′CE,
∴DF′=EF=DF′+ED,
∴BF=EF-ED;
解:連接AC
∵AB=BC,∠B=80°
∴∠ACB=50°
由(1)得∠FEC=∠DEC=70°
∴∠ECB=70°
而∠B=∠BCD=80°
∴∠DCE=10°
∴∠BCF=30°
考點(diǎn):全等三角形的性質(zhì)和判定
點(diǎn)評:解答本題的關(guān)鍵是熟練掌握判定兩個(gè)三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com