【題目】如圖1,在RtABC中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn)PA出發(fā)沿ACC點(diǎn)以1厘米/秒的速度勻速移動;點(diǎn)QC出發(fā)沿CBB點(diǎn)以2厘米/秒的 速度勻速移動.點(diǎn)P、Q分別從起點(diǎn)同時出發(fā),移動到某一位置時所需時間為t秒.

1)當(dāng)t= 時,PQAB

2)當(dāng)t為何值時,PCQ的面積等于5cm2?

3)在P、Q運(yùn)動過程中,在某一時刻,若將PQC翻折,得到EPQ,如圖2,PEAB能否垂直?若能,求出相應(yīng)的t值;若不能,請說明理由.

【答案】(1)2.4;(2)1;(3)見解析.

【解析】

1)由PQAB得出PQC∽△ABC,從而得到比例式PCAC=CQBC,建立關(guān)于t的方程,解方程求出t的值即可;

2)由三角形面積公式可建立關(guān)于t的方程,解方程求出t的值即可;
3)延長QEAC于點(diǎn)D,若PEAB,則QDAB,所以可得CQD∽△CBA,由相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出DE=0.5t,易證ABC∽△DPE,再由相似三角形的性質(zhì)可得,把已知數(shù)據(jù)代入即可求出t的值.

解:(1) ∵點(diǎn)PA出發(fā)沿ACC點(diǎn)以1厘米/秒的速度勻速移動;點(diǎn)QC出發(fā)沿CBB點(diǎn)以2厘米/秒的速度勻速移動,

PC=AC-AP=6-tCQ=2t,

當(dāng)PQAB時,∴△PQC∽△ABC,
PCAC=CQBC
(6-t)6=2t8

t=2.4

∴當(dāng)t=2.4時,PQAB

2)∵點(diǎn)PA出發(fā)沿ACC點(diǎn)以1厘米/秒的速度勻速移動;點(diǎn)QC出發(fā)沿CBB點(diǎn)以2厘米/秒的速度勻速移動,


PC=AC-AP=6-t,CQ=2t
SCPQ= CPCQ=5,

t2-6t+5=0
解得t1=1,t2=5(不合題意,舍去)
∴當(dāng)t=1秒時,PCQ的面積等于5cm2
3)能垂直,理由如下:
延長QEAC于點(diǎn)D,

∵將PQC翻折,得到EPQ,
∴△QCP≌△QEP,
∴∠C=QEP=90°,
PEAB,則QDAB,
∴△CQD∽△CBA
,
,

QD=2.5t,
QC=QE=2t
DE=0.5t
∵∠A=EDP,∠C=DEP=90°,

ABC∽△DPE,

,
解得:,
綜上可知:當(dāng)t=時,PEAB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為18m),另外三邊利用學(xué),校現(xiàn)有總長38m的鐵欄圍成.

1)若圍成的面積為,試求出自行車車棚的長和寬;

2)能圍成面積為的自行車車棚嗎?如果能,請你給出設(shè)計(jì)方案;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一條長為40cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.

1)要使這兩個正方形的面積之和等于52cm2,那么這段鐵絲剪成兩段后的長度分別是多少?

2)兩個正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校需要添置教師辦公桌椅A、B兩型共200套,已知2A型桌椅和1B型桌椅共需2000元,1A型桌椅和3B型桌椅共需3000元.

(1)求A,B兩型桌椅的單價;

(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要運(yùn)費(fèi)10元.設(shè)購買A型桌椅x套時,總費(fèi)用為y元,求yx的函數(shù)關(guān)系式,并直接寫出x的取值范圍;

(3)求出總費(fèi)用最少的購置方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,窗簾的褶皺是指按照窗戶的實(shí)際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價格為120/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費(fèi)用多180元,求小莉房間窗戶的寬度與高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動,直到點(diǎn)O為止;動點(diǎn)Q同時從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動,與點(diǎn)P同時結(jié)束運(yùn)動.

1)當(dāng)運(yùn)動時間為2s時,P、Q兩點(diǎn)的距離為   cm

2)請你計(jì)算出發(fā)多久時,點(diǎn)P和點(diǎn)Q之間的距離是10cm;

3)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線過點(diǎn)D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB2,∠BAD60°,將菱形ABCD繞點(diǎn)A逆時針方向旋轉(zhuǎn),對應(yīng)得到菱形AEFG,點(diǎn)EAC上,EFCD交于點(diǎn)P,則DP的長是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是二次函數(shù)圖象的一部分,圖象過點(diǎn),二次函數(shù)圖象對稱軸為直線,給出五個結(jié)論:①;③當(dāng)時,的增大而增大;④方程的根為,;其中正確結(jié)論是(

A. ①②③ B. ①③④ C. ②③④ D. ③④⑤

查看答案和解析>>

同步練習(xí)冊答案