【題目】已知拋物線.
(1)該拋物線的對稱軸是直線___________,頂點坐標(biāo)是___________;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)畫出該拋物線的圖像;
(3)根據(jù)圖像回答,有實數(shù)根,此時的取值范圍。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2014年投入教育經(jīng)費200萬元,2016年投入教育經(jīng)費242萬元.
(1)求2014年至2016年該地區(qū)投入教育經(jīng)費的年平均增長率;
(2)根據(jù)(1)所得的年平均增長率,預(yù)計2017年該地區(qū)將投入教育經(jīng)費多少萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了慶祝建國七十周年,決定舉辦一臺文藝晚會,為了了解學(xué)生最喜愛的節(jié)目形式,隨機抽取了部分學(xué)生進行調(diào)查,規(guī)定每人從“歌曲”,“舞蹈”,“小品”,“相聲”和“其它”五個選項中選擇一個,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表,請根據(jù)圖中信息,解答下列題:
最喜愛的節(jié)目 | 人數(shù) |
歌曲 | 15 |
舞蹈 | a |
小品 | 12 |
相聲 | 10 |
其它 | b |
(1)在此次調(diào)查中,該校一共調(diào)查了 名學(xué)生;
(2)a= ;b= ;
(3)在扇形計圖中,計算“歌曲”所在扇形的圓心角的度數(shù);
(4)若該校共有1200名學(xué)生,請你估計最喜愛“相聲”的學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,風(fēng)車的支桿OE垂直于桌面,風(fēng)車中心O到桌面的距離OE為25cm,小小風(fēng)車在風(fēng)吹動下繞著中心O不停地轉(zhuǎn)動,轉(zhuǎn)動過程中,葉片端點A、B、C、D在同一圓O上,已知⊙O的半徑為10cm,
(1)風(fēng)車在轉(zhuǎn)動過程中,當(dāng)∠AOE=30°時,求點A到桌面的距離.
(2)在風(fēng)車轉(zhuǎn)動一周的過程中,求點A相對于桌面的高度不超過20cm所經(jīng)過的路線長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一堂數(shù)學(xué)實踐課上,趙老師給出了下列問題:
(提出問題)
(1)如圖1,在△ABC中,E是BC的中點,P是AE的中點,就稱CP是△ABC的“雙中線”,∠ACB=90°,AC=3,AB=5.則CP= .
(探究規(guī)律)
(2)在圖2中,E是正方形ABCD一邊上的中點,P是BE上的中點,則稱AP是正方形ABCD的“雙中線”,若AB=4.則AP的長為 (按圖示輔助線求解);
(3)在圖3中,AP是矩形ABCD的“雙中線”,若AB=4,BC=6,請仿照(2)中的方法求出AP的長,并說明理由;
(拓展應(yīng)用)
(4)在圖4中,AP是平行四邊形ABCD的“雙中線”,若AB=4,BC=10,∠BAD=120°.求出△ABP的周長,并說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點的切線與OC的延長線交于點D,∠B=30°,OH=5.
(1)求⊙O的半徑;
(2)求出劣弧AC的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某座拋物線型的隧道示意圖,已知路面AB寬24米,拋物線最高點C到路面AB的距離為8米,為保護來往車輛的安全,在該拋物線上距路面AB高為6米的點E,F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校創(chuàng)客社團計劃利用新購買的無人機設(shè)備測量學(xué)校旗桿的高.他們先將無人機放在旗桿前的點處(無人機自身的高度忽略不計),測得此時點的仰角為,因為旗桿底部有臺階,所以不能直接測出垂足到點的距離.無人機起飛后,被風(fēng)吹至點處,此時無人機距地面的高度為3米,測得此時點的俯角為,點的仰角為,且點,,在同一平面內(nèi),求旗桿的高度.(計算結(jié)果精確到0.1米,參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)根據(jù)圖象寫出使一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com