如圖,在直角坐標系中,Rt△OAB的直角頂點A在x軸上,OA=4,AB=3.動點M從點A出發(fā),以每秒1個單位長度的速度,沿AO向終點O移動;同時點N從點O出發(fā),以每秒1.25個單位長度的速度,沿OB向終點B移動.當兩個動點運動了x秒(0<x<4)時,解答下列問題:
(1)求點N的坐標(用含x的代數(shù)式表示);
(2)設(shè)△OMN的面積是S,求S與x之間的函數(shù)表達式;當x為何值時,S有最大值?最大值是多少?
(3)在兩個動點運動過程中,是否存在某一時刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請說明理由.
【考點】相似形綜合題.
【專題】壓軸題.
【分析】(1)由勾股定理求出OB,作NP⊥OA于P,則NP∥AB,得出△OPN∽△OAB,得出比例式,求出OP、PN,即可得出點N的坐標;
(2)由三角形的面積公式得出S是x的二次函數(shù),即可得出S的最大值;
(3)分兩種情況:①若∠OMN=90°,則MN∥AB,由平行線得出△OMN∽△OAB,得出比例式,即可求出x的值;
②若∠ONM=90°,則∠ONM=∠OAB,證出△OMN∽△OBA,得出比例式,求出x的值即可.
【解答】解:(1)根據(jù)題意得:MA=x,ON=1.25x,
在Rt△OAB中,由勾股定理得:OB===5,
作NP⊥OA于P,如圖1所示:
則NP∥AB,
∴△OPN∽△OAB,
∴,
即,
解得:OP=x,PN=,
∴點N的坐標是(x,);
(2)在△OMN中,OM=4﹣x,OM邊上的高PN=,
∴S=OM•PN=(4﹣x)•=﹣x2+x,
∴S與x之間的函數(shù)表達式為S=﹣x2+x(0<x<4),
配方得:S=﹣(x﹣2)2+,
∵﹣<0,
∴S有最大值,
當x=2時,S有最大值,最大值是;
(3)存在某一時刻,使△OMN是直角三角形,理由如下:
分兩種情況:①若∠OMN=90°,如圖2所示:
則MN∥AB,
此時OM=4﹣x,ON=1.25x,
∵MN∥AB,
∴△OMN∽△OAB,
∴,
即,
解得:x=2;
②若∠ONM=90°,如圖3所示:
則∠ONM=∠OAB,
此時OM=4﹣x,ON=1.25x,
∵∠ONM=∠OAB,∠MON=∠BOA,
∴△OMN∽△OBA,
∴,
即,
解得:x=;
綜上所述:x的值是2秒或秒.
【點評】本題是相似形綜合題目,考查了相似三角形的判定與性質(zhì)、勾股定理、坐標與圖形特征、直角三角形的性質(zhì)、三角形面積的計算、求二次函數(shù)的解析式以及最值等知識;本題難度較大,綜合性強,特別是(3)中,需要進行分類討論,通過證明三角形相似才能得出結(jié)果.
科目:初中數(shù)學 來源: 題型:
將拋物線y=4x2先向右平移2個單位,再向下平移1個單位,得到的拋物線解析式為( )
A.y=4(x+2)2﹣1 B.y=4(x﹣2)2﹣1 C.y=4(x+2)2+1 D.y=4(x﹣2)2+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
“五•一”假期,某公司組織部分員工分別到A、B、C、D四地旅游,公司按定額購買了前往各地的車票.如圖是未制作完的車票種類和數(shù)量的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖回答下列問題:
(1)若去D地的車票占全部車票的10%,請求出D地車票的數(shù)量,并補全統(tǒng)計圖;
(2)若公司采用隨機抽取的方式分發(fā)車票,每人抽取一張(所有車票的形狀、大小、質(zhì)地完全相同且充分洗勻),那么員工小胡抽到去A地的概率是多少?
(3)若有一張車票,小王、小李都想要,決定采取拋擲一枚各面分別標有1,2,3,4的正四面體骰子的方法來確定,具體規(guī)則是:“每人各拋擲一次,若小王擲得著地一面的數(shù)字比小李擲得著地一面的數(shù)字小,車票給小王,否則給小李”.試用“列表法或畫樹狀圖”的方法分析,這個規(guī)則對雙方是否公平?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
遺傳物質(zhì)脫氧核糖核酸(DNA)的分子直徑為0.00000023cm,則這個數(shù)據(jù)用科學記數(shù)法表示為
cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com