【題目】如圖,在平面直角坐標(biāo)系中,點A(﹣6,0),點B(0,8),點C在線段AB上,點D在y軸上,將∠ABO沿直線CD翻折,使點B與點A重合.若點E在線段CD延長線上,且CE=5,點M在y軸上,點N在坐標(biāo)平面內(nèi),如果以點C、E、M、N為頂點的四邊形是菱形,那么點N有( )
A.2個B.3個C.4個D.5個
【答案】D
【解析】
分別以EC為邊,EC為對角線討論可知滿足條件的菱形.
如圖,由題意得:AB=,
C為AB的中點,AC=BC=5,
以EC為邊時,過點B作BN1∥CE,BN1=CE,則四邊形CEN1M1為菱形;
平移CE,當(dāng)點C落在y軸時(點M2的位置),點E平移到N2的位置,此時四邊形CM2N2E為菱形;
平移CE,當(dāng)點E落在y軸時(點M3的位置),點C平移到N3的位置,此時四邊形CN3M3E為菱形;
平移CE,當(dāng)點E落在y軸時(點M4的位置),點C平移到N4的位置,此時四邊形CN4M4E為菱形;
以EC為對角線,作CE的垂直平分線M5N5,交y軸于點M5,作EN5∥CM5且EN5= CM5,連接C、N5,此時四邊形CN5EM5為菱形;
綜上,可知滿足條件的菱形有5個.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解本校九年級學(xué)生體育測試項目“400米跑”的訓(xùn)練情況,體育教師在2019年1-5月份期間,每月隨機抽取部分學(xué)生進行測試,將測試成績分為:A,B,C,D四個等級,并繪制如下兩幅統(tǒng)計圖.根據(jù)統(tǒng)計圖提供的信息解答下列問題:
(1)______月份測試的學(xué)生人數(shù)最少,______月份測試的學(xué)生中男生、女生人數(shù)相等;
(2)求扇形統(tǒng)計圖中D等級人數(shù)占5月份測試人數(shù)的百分比;
(3)若該校2019年5月份九年級在校學(xué)生有600名,請你估計出測試成績是A等級的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知輪船甲在A處沿北偏東65°的方向勻速航行,同時輪船乙在輪船甲的南偏東40°方向的點B處沿某一方向航行,速度與甲輪船的速度相同.若經(jīng)過一段時間后,兩艘輪船恰好相遇,則輪船乙的航行方向為( 。
A.北偏西40°B.北偏東40°C.北偏西35°D.北偏東35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)探究活動中,敏敏進行了如下操作:如圖,將四邊形紙片沿過點的直線折疊,使得點落在上的點處,折痕為;再將分別沿折疊,此時點落在上的同一點處.請完成下列探究:
的大小為__________;
當(dāng)四邊形是平行四邊形時的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年植樹節(jié)期間,某景觀園林公司購進一批成捆的,兩種樹苗,每捆種樹苗比每捆種樹苗多10棵,每捆種樹苗和每捆種樹苗的價格分別是630元和600元,而每棵種樹苗和每棵種樹苗的價格分別是這一批樹苗平均每棵價格的0.9倍和1.2倍.
(1)求這一批樹苗平均每棵的價格是多少元?
(2)如果購進的這批樹苗共5500棵,種樹苗至多購進3500棵,為了使購進的這批樹苗的費用最低,應(yīng)購進種樹苗和種樹苗各多少棵?并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙C過菱形ABCD的三個頂點B,A,D,連結(jié)BD,過點A作AE∥BD交射線CB于點E.
(1)求證:AE是⊙C的切線.
(2)若半徑為2,求圖中線段AE、線段BE和圍成的部分的面積.
(3)在(2)的條件下,在⊙C上取點F,連結(jié)AF,使∠DAF=15°,求點F到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘數(shù)學(xué)家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC,點P在線段BA的延長線上,作PD⊥AC,交AC的延長線于點D,點D關(guān)于直線AB的對稱點為E,連接PE并延長PE到點F,使EF=AC,連接CF.
(1)依題意補全圖1;
(2)求證:AD=CF;
(3)若AC=2,點Q在直線AB上,寫出一個AQ的值,使得對于任意的點P總有QD=QF,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)如圖,在中,,點D,E分別在邊上,,連接,點P為的中點.
(觀察猜想)觀察圖1,猜想線段與的數(shù)量關(guān)系是________,位置關(guān)系是________.
(2)(拓展探究)把繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論是否仍然成立,若成立,請證明:否則寫出新的結(jié)論并說明理由.
(3)(問題解決)把繞點A在平面內(nèi)自由旋轉(zhuǎn),若,請直接寫出線段長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com