精英家教網 > 初中數學 > 題目詳情

作业宝已知直徑AB、CD互相垂直,點M是數學公式上一動點,連AM、MC、MD.
(1)如圖1,求證:數學公式;
(2)如圖2,求證:數學公式為定值.

證明:(1)如圖1,連接AC、AD.
∵直徑AB、CD互相垂直,
∴AC=AD,∠CAD=90°,
∴AC=AD=CD.
由托勒密定理得到MC•AD+MA•CD=AC•MD,即MC•CD+MA•CD=CD•MD,
∴MC+MA=MD
∴MD-MC=MA.

(2)如圖2,連接BC、BD.
∵直徑AB、CD互相垂直,
∴AC=AD,∠CAD=90°,
∴BC=BD=CD.
由托勒密定理得到MD•BC+MC•BD=MB•CD,即MD+MC=MB,
∴MD2-MC2=(MD+MC)(MD-MC)
=AM•MB
=2AM•MB,
=2,即為定值.
分析:(1)如圖1,連接AC、AD.根據圖示知四邊形AMCD是圓內接四邊形,則由托勒密定理可以求得MC•AD+AM•CD=AC•MD.根據垂徑定理、勾股定理易求AC=AD=CD,將其代入可以求得結論;
(2)如圖2,連接BC、BD.則四邊形MCBD是圓內接四邊形,則由托密勒定理得到MD•BC+MC•BD=MB•CD根據垂徑定理、勾股定理易求BC=BD=CD,則MD+MC=MB,結合(1)得到MD2-MC2=(MD+MC)(MD-MC)=AM•MB=2AM•MB.
點評:本題考查了圓的綜合題.其中涉及到了垂徑定理,勾股定理,圓內接四邊形的性質.難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,已知:AB、CD是⊙O內非直徑的兩弦,求證AB與CD不能互相平分.

查看答案和解析>>

科目:初中數學 來源: 題型:

19、已知⊙O的直徑AB、CD互相垂直,弦AE交CD于F,若⊙O的半徑為R,
求證:AE•AF=2R2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知直徑AB、CD互相垂直,點M是
AC
上一動點,連AM、MC、MD.
(1)如圖1,求證:MD-MC=
2
MA
;
(2)如圖2,求證:
(MD2-MC2)
MA?MB
為定值.

查看答案和解析>>

科目:初中數學 來源: 題型:013

如圖,已知直線ABCD互相垂直,O是垂足,EF是過O點的直線,∠1=50°,則∠2(  )

A50°     B40°     C60°    D.以上都不對

查看答案和解析>>

同步練習冊答案