“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2-2x=-2實數(shù)根的情況是
A.有三個實數(shù)根B.有兩個實數(shù)根C.有一個實數(shù)根D.無實數(shù)根
C

試題分析:由,,即是判斷函數(shù)與函數(shù)的圖象的交點情況.



因為函數(shù)與函數(shù)的圖象只有一個交點
所以方程只有一個實數(shù)根
故選C.
點評:函數(shù)的圖象問題是初中數(shù)學(xué)的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:是方程的兩個實數(shù)根,且,拋物線的圖像經(jīng)過點A()、B().

(1)求這個拋物線的解析式;
(2) 設(shè)(1)中拋物線與軸的另一交點為C,拋物線的頂點為D,
試求出點CD的坐標(biāo)和△BCD的面積;
(3) P是線段OC上的一點,過點PPH軸,與拋物線交于H點,
若直線BC把△PCH分成面積之比為2:3的兩部分,請求出P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點,點A在y軸正半軸上,點C在x軸正半軸上,點B坐標(biāo)為(2,),∠BCO=60°,OH⊥BC于點H.動點P從點H出發(fā),沿線段HO向點O運動,動點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度.設(shè)點P運動的時間為t秒.

(1)求OH的長;
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為何值時,△OPQ的面積最大,最大值是多少;
(3)設(shè)PQ與OB交于點M.①當(dāng)△OPM為等腰三角形時,求(2)中S的值. ②探究線段OM長度的最大值是多少,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y= -x+3與x軸,y軸分別相交于點B、C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸為直線x=2.

(1)求A點的坐標(biāo);
(2)求該拋物線的函數(shù)表達式;
(3)連結(jié)AC.請問在x軸上是否存在點Q,使得以點P、B、Q為頂點的三角形與△ABC 相似,若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線C1:y=ax2+bx+1的頂點坐標(biāo)為D(1,0),
(1)求拋物線C1的解析式;
(2)如圖1,將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經(jīng)過點D交y軸于點A,交拋物線C2于點B,拋物線C2的頂點為P,求△DBP的面積;
(3)如圖2,連接AP,過點B作BC⊥AP于C,設(shè)點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC·(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則函數(shù)值時,自變量的取值范圍是( ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線軸于點,交軸于點,在軸上方的拋物線上有兩點,它們關(guān)于軸對稱,點軸左側(cè).于點,于點,四邊形與四邊形的面積分別為6和10,則的面積之和為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:
我們知道,一次函數(shù)ykxb的圖象是一條直線,而ykxb經(jīng)過恒等變形可化為直線的另一種表達形式:AxBxC=0(A、B、C是常數(shù),且A、B不同時為0).如圖1,點Pm,n)到直線lAxBxC=0的距離(d)計算公式是:d 

例:求點P(1,2)到直線y x的距離d時,先將y x化為5x-12y-2=0,再由上述距離公式求得d  
解答下列問題:
如圖2,已知直線y=-x-4與x軸交于點A,與y軸交于點B,拋物線yx2-4x+5上的一點M(3,2).

(1)求點M到直線AB的距離.
(2)拋物線上是否存在點P,使得△PAB的面積最?若存在,求出點P的坐標(biāo)及△PAB面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的函數(shù)解析式為yax2b x-3ab<0),若這條拋物線經(jīng)過點(0,-3),方程ax2b x-3a=0的兩根為x1,x2,且|x1x2|=4.
⑴求拋物線的頂點坐標(biāo).
⑵已知實數(shù)x>0,請證明x≥2,并說明x為何值時才會有x=2.

查看答案和解析>>

同步練習(xí)冊答案