在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2.E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交軸于D點(diǎn),過點(diǎn)D作DF⊥AE于點(diǎn)F.
(1)求OA、OC的長;
(2)求證:DF為⊙O′的切線;
(3)小明在解答本題時,發(fā)現(xiàn)△AOE是等腰三角形.由此,他斷定:“直線BC上一定存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形,且點(diǎn)P一定在⊙O′外”.你同意他的看法嗎?請充分說明理由.
⑴在矩形OABC中,設(shè)OC=x 則OA= x+2,依題意得
解得:(不合題意,舍去)
∴OC=3, OA=5 ……………………2分
⑵連結(jié)O′D ,在矩形OABC中,OC=AB,∠OCB=∠ABC=90,CE=BE=
∴ △OCE≌△ABE ∴EA=EO ∴∠1=∠2
在⊙O′中,∵ O′O= O′D
∴∠1=∠3 ∴∠3=∠2 ∴O′D∥AE,
∵DF⊥AE ∴ DF⊥O′D ……………5分
又∵點(diǎn)D在⊙O′上,O′D為⊙O′的半徑 ,
∴DF為⊙O′切線. …………………6分
⑶不同意. 理由如下:
①當(dāng)AO=AP時,以點(diǎn)A為圓心,以AO為半徑畫弧交BC于P1和P4兩點(diǎn)
過P1點(diǎn)作P1H⊥OA于點(diǎn)H,P1H = OC = 3,
∵A P1= OA = 5 ∴A H = 4,
∴OH =1 求得點(diǎn)P1(1,3)
同理可得:P4(9,3) ………………………9分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com