【題目】如圖,已知BC∥GE,AF∥DE,∠1=56°.

(1)求AFG的度數(shù);

(2)若AQ平分FAC,交BC于點(diǎn)Q,且Q=14°,求ACB的度數(shù).

【答案】(1)56°,(2)84°.

【解析】

(1)先根據(jù)BCEG得出∠E=1=56°,再由AFDE可知∠AFG=E=56°;

(2)作AMBC,由平行線的傳遞性可知AMEG,故∠FAM=AFG,再根據(jù)AMBC可知∠QAM=Q,故∠FAQ=FAM+QAM,再根據(jù)AQ平分∠FAC可知∠MAC=QAC+QAM=84°,根據(jù)AMBC即可得出結(jié)論.

(1)BCEG,

∴∠E=1=56°.

AFDE,

∴∠AFG=E=56°;

(2)作AMBC,

BCEG,

AMEG,

∴∠FAM=AFG=56°.

AMBC,

∴∠QAM=Q=14°,

∴∠FAQ=FAM+QAM=70°.

AQ平分∠FAC,

∴∠QAC=FAQ=70°,

∴∠MAC=QAC+QAM=84°.

AMBC,

∴∠ACB=MAC=84°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)EAH的中點(diǎn),點(diǎn)FGH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AOCBOC互余,OD平分BOC,EOC2∠AOE

1)若AOD75°,AOE的度數(shù)

2)若DOE54°,EOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:AD平分∠CAE,AD∥BC.

(1)求證:△ABC是等腰三角形.

(2)當(dāng)∠CAE等于多少度時(shí)△ABC是等邊三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面推理過(guò)程

如圖,已知DEBC,DF、BE分別平分∠ADE、ABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DF、BE分別平分∠ADE、ABC,

∴∠ADF=      ,

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,點(diǎn)P是與圓心C不重合的點(diǎn),給出如下定義:若點(diǎn)P′為射線CP上一點(diǎn),滿足CPCP′=r2 , 則稱點(diǎn)P′為點(diǎn)P關(guān)于⊙C的反演點(diǎn).右圖為點(diǎn)P及其關(guān)于⊙C的反演點(diǎn)P′的示意圖.

(1)如圖1,當(dāng)⊙O的半徑為1時(shí),分別求出點(diǎn)M(1,0),N(0,2),T()關(guān)于⊙O的反演點(diǎn)M′,N′,T′的坐標(biāo);
(2)如圖2,已知點(diǎn)A(1,4),B(3,0),以AB為直徑的⊙G與y軸交于點(diǎn)C,D(點(diǎn)C位于點(diǎn)D下方),E為CD的中點(diǎn).
①若點(diǎn)O,E關(guān)于⊙G的反演點(diǎn)分別為O′,E′,求∠E′O′G的大;
②若點(diǎn)P在⊙G上,且∠BAP=∠OBC,設(shè)直線AP與x軸的交點(diǎn)為Q,點(diǎn)Q關(guān)于⊙G的反演點(diǎn)為Q′,請(qǐng)直接寫(xiě)出線段GQ′的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說(shuō)明理由;

(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過(guò)程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,定義直線y=ax+b為拋物線y=ax2+bx的特征直線,C(a,b)為其特征點(diǎn).設(shè)拋物線y=ax2+bx與其特征直線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)當(dāng)點(diǎn)A的坐標(biāo)為(0,0),點(diǎn)B的坐標(biāo)為(1,3)時(shí),特征點(diǎn)C的坐標(biāo)為


(2)若拋物線y=ax2+bx如圖所示,請(qǐng)?jiān)谒o圖中標(biāo)出點(diǎn)A、點(diǎn)B的位置;
(3)設(shè)拋物線y=ax2+bx的對(duì)稱軸與x軸交于點(diǎn)D,其特征直線交y軸于點(diǎn)E,點(diǎn)F的坐標(biāo)為(1,0),DE∥CF.
①若特征點(diǎn)C為直線y=﹣4x上一點(diǎn),求點(diǎn)D及點(diǎn)C的坐標(biāo) ;
②若<tan∠ODE<2,則b的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案