17、如圖,點E是正方形ABCD內(nèi)一點,將△ABE繞點B順時針轉(zhuǎn)90°,點E的對應(yīng)點是F.
(1)在圖中畫出旋轉(zhuǎn)后的三角形;
(2)△EBF是
等腰直角
三角形;(只寫出結(jié)論,不證明)
(3)寫出AE和CF的關(guān)系.(不用證明)
分析:(1)按要求作圖;
(2)由旋轉(zhuǎn)的性質(zhì)可得,∠EBF=90°,BE=BF,則△EBF是等腰直角三角形;
(3)因為△ABE繞點B順時針轉(zhuǎn)90°,所以AE⊥CF,且AE=CF.
解答:解:(1)如圖;

(2)由旋轉(zhuǎn)的性質(zhì)可得,∠EBF=90°,BE=BF,
∴△EBF是等腰直角三角形;

(3)因為△ABE繞點B順時針轉(zhuǎn)90°,
∴AE順時針轉(zhuǎn)90°到CF得位置,
即AE⊥CF,且AE=CF.
點評:此題考查旋轉(zhuǎn)變換作圖,以及旋轉(zhuǎn)的性質(zhì),難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點E是正方形ABCD邊BA延長線上一點(AE<AD),連接DE.與正方形ABCD的外接圓相交于點F,BF與AD相交于點G.
(1)求證:BG=DE;
(2)若tan∠E=2,BE=6
2
,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•包頭)如圖,點E是正方形ABCD內(nèi)的一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,則∠BE′C=
135
135
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點E是正方形ABCD邊BC的中點,H是BC延長線上的一點,EG⊥AE于點E,交邊CD于G,
(1)求證:△ABE∽△ECG;
(2)延長EG交∠DCH的平分線于F,則AE與EF的數(shù)量關(guān)系是
AE=EF
AE=EF
;
(3)若E為線段BC上的任意一點,則它們之間的關(guān)系是否還能成立?若成立,請給予證明;若不能成立,則舉一個反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青銅峽市模擬)如圖,點E是正方形ABCD內(nèi)一點,△CDE是等邊三角形,連接EB、EA.
求證:△ADE≌△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點M是正方形ABCD的邊CD的中點,正方形ABCD的邊長為4cm,點P按A-B-C-M-D的順序在正方形的邊上以每秒1cm的速度作勻速運動,設(shè)點P的運動時間為x(秒),△APM的面積為y(cm2
(1)直接寫出點P運動2秒時,△AMP面積; 
(2)在點P運動4秒后至8秒這段時間內(nèi),y與x的函數(shù)關(guān)系式;
(3)在點P整個運動過程中,當(dāng)x為何值時,y=3?

查看答案和解析>>

同步練習(xí)冊答案