(1)證明:∵四邊形ABCD是平行四邊形,
∴∠BAD+∠CDA=180°.
∵AE與DE分別平分∠BAD和∠ADC,
∴∠EAD=
∠BAD,∠EDA=
∠ADC,
∴∠EAD+∠EDA=
(∠BAD+∠CDA)=90°,
∴∠AED=90°.
即AE⊥DE.
(2)解:設AB=CD=5k,AE=8k,
∵DE平分∠ADC,
∴∠ADE=∠CDE.
∵AD∥CE,
∴∠ADE=∠CED,
∴∠CDE=∠CED,
∴CE=CD=5k.
同理AB=BE=5k,
∴AD=BC=10k,
又∵AE=8k,∠AED=90°,
∴DE=6k.
∵∠BAE=∠EAD,∠AFG=∠AED=90°,
∴△AFG∽△AED.
∴
=
,
即
=
=
,
∴tan∠AGF=
=
.
分析:(1)因為平行四邊形的鄰角互補,有角平分線的性質(zhì)可得∠EAD和∠EDA的和是90°,所以能求出∠AED=90°,即AE⊥DE.
(2)由(1)知AD是圓的直徑,所以角AFF是90°,求tan∠AGF的值,可以轉(zhuǎn)化為求
的值,此值可利用證相似三角形得到.
點評:本題考查了相似三角形的判定和性質(zhì),常用的相似判定方法有:平行線,AA,SAS,SSS;常用到的性質(zhì):對應角相等;對應邊的比值相等;面積比等于相似比的平方.